16,903 research outputs found

    Large q expansion of the 2D q-states Potts model

    Get PDF
    We present a recursive method to calculate a large q expansion of the 2d q-states Potts model free energies based on the Fortuin-Kasteleyn representation of the model. With this procedure, we compute directly the ordered phase partition function up to order 10 in 1/sqrt{q}. The energy cumulants at the transition can be obtained with suitable resummation and come out large for q less or around 15. As a consequence, expansions of the free energies around the transition temperature are useless for not large enough values of q. In particular the pure phase specific heats are predicted to be much larger, at q < 15, than the values extracted from current finite size scaling analysis of extrema, whereas they agree very well with recent values extracted at the transition point.Comment: 31 pages (tex) including 15 figures (Postscript

    Non-perturbative improvement of bilinears in unquenched QCD

    Full text link
    We describe how the improvement of quark bilinears generalizes from quenched to unquenched QCD, and discuss which of the additional improvement constants can be determined using Ward Identities.Comment: LATTICE99 (Improvement and Renormalization). 3 pages, no figures. Corrected error (improvement coefficient gTg_T is not needed

    Critical Behavior of the Antiferromagnetic Heisenberg Model on a Stacked Triangular Lattice

    Full text link
    We estimate, using a large-scale Monte Carlo simulation, the critical exponents of the antiferromagnetic Heisenberg model on a stacked triangular lattice. We obtain the following estimates: γ/ν=2.011±.014\gamma/\nu= 2.011 \pm .014 , ν=.585±.009\nu= .585 \pm .009 . These results contradict a perturbative 2+ϵ2+\epsilon Renormalization Group calculation that points to Wilson-Fisher O(4) behaviour. While these results may be coherent with 4−ϵ4-\epsilon results from Landau-Ginzburg analysis, they show the existence of an unexpectedly rich structure of the Renormalization Group flow as a function of the dimensionality and the number of components of the order parameter.Comment: Latex file, 10 pages, 1 PostScript figure. Was posted with a wrong Title !

    Non-perturbative Renormalization Constants using Ward Identities

    Get PDF
    We extend the application of vector and axial Ward identities to calculate bAb_A, bPb_P and bTb_T, coefficients that give the mass dependence of the renormalization constants of the corresponding bilinear operators in the quenched theory. The extension relies on using operators with non-degenerate quark masses. It allows a complete determination of the O(a)O(a) improvement coefficients for bilinears in the quenched approximation using Ward Identities alone. Only the scale dependent normalization constants ZP0Z_P^0 (or ZS0Z_S^0) and ZTZ_T are undetermined. We present results of a pilot numerical study using hadronic correlators.Comment: 3 pages. Makefile and sources included. Talk presented at LATTICE98 (matrixelement

    Phenomenology from 100 large lattices

    Get PDF
    We present a status report on simulations being done on 32^3 \times 64 lattices at \beta = 6.0 using quenched Wilson fermions. Phenomenologically relevant results for the spectrum, decay constants, the kaon B-parameter B_K, B_7, B_8, semi-leptonic and B\to K^* \gamma form factors are given based on a statistical sample of 100 configurations
    • …
    corecore