20 research outputs found

    Bluetongue virus RNA binding protein NS2 is a modulator of viral replication and assembly

    Get PDF
    BACKGROUND: Bluetongue virus (BTV) particles consist of seven structural proteins that are organized into two capsids. In addition, BTV also encodes three non-structural (NS) proteins of which protein 2 (NS2) is the RNA binding protein and is also the major component of virus encoded inclusion bodies (VIBs), which are believed to be virus assembly sites. To investigate the contribution of NS2 in virus replication and assembly we have constructed inducible mammalian cell lines expressing full-length NS2. In addition, truncated NS2 fragments were also generated in an attempt to create dominant negative mutants for NS2 function. RESULTS: Our data revealed that expression of full-length NS2 was sufficient for the formation of inclusion bodies (IBs) that were morphologically similar to the VIBs formed during BTV infection. By using either, individual BTV proteins or infectious virions, we found that while the VP3 of the inner capsid (termed as "core") that surrounds the transcription complex was closely associated with both NS2 IBs and BTV VIBs, the surface core protein VP7 co-localized with NS2 IBs only in the presence of VP3. In contrast to the inner core proteins, the outer capsid protein VP2 was not associated with either IBs or VIBs. Like the core proteins, newly synthesized BTV RNAs also accumulated in VIBs. Unlike full-length NS2, neither the amino-, nor carboxyl-terminal fragments formed complete IB structures and each appeared to interfere in overall virus replication when similarly expressed. CONCLUSION: Together, these data demonstrate that NS2 is sufficient and necessary for IB formation and a key player in virus replication and core assembly. Perturbation of NS2 IB formation resulted in reduced virus synthesis and both the N terminal (NS2-1) and C terminal (NS2-2) fragments act as dominant negative mutants of NS2 function

    Interaction between Bluetongue virus outer capsid protein VP2 and vimentin is necessary for virus egress

    Get PDF
    BACKGROUND: The VP2 outer capsid protein Bluetongue Virus (BTV) is responsible for receptor binding, haemagglutination and eliciting host-specific immunity. However, the assembly of this outer capsid protein on the transcriptionally active viral core would block transcription of the virus. Thus assembly of the outer capsid on the core particle must be a tightly controlled process during virus maturation. Earlier studies have detected mature virus particles associated with intermediate filaments in virus infected cells but the viral determinant for this association and the effect of disrupting intermediate filaments on virus assembly and release are unknown. RESULTS: In this study it is demonstrated that BTV VP2 associates with vimentin in both virus infected cells and in the absence of other viral proteins. Further, the determinants of vimentin localisation are mapped to the N-terminus of the protein and deletions of aminio acids between residues 65 and 114 are shown to disrupt VP2-vimentin association. Site directed mutation also reveals that amino acid residues Gly 70 and Val 72 are important in the VP2-vimentin association. Mutation of these amino acids resulted in a soluble VP2 capable of forming trimeric structures similar to unmodified protein that no longer associated with vimentin. Furthermore, pharmacological disruption of intermediate filaments, either directly or indirectly through the disruption of the microtubule network, inhibited virus release from BTV infected cells. CONCLUSION: The principal findings of the research are that the association of mature BTV particles with intermediate filaments are driven by the interaction of VP2 with vimentin and that this interaction contributes to virus egress. Furthermore, i) the N-terminal 118 amino acids of VP2 are sufficient to confer vimentin interaction. ii) Deletion of amino acids 65–114 or mutation of amino acids 70–72 to DVD abrogates vimentin association. iii) Finally, disruption of vimentin structures results in an increase in cell associated BTV and a reduction in the amount of released virus from infected cells

    Parameterized Modeling and Scheduling of Dataflow Graphs

    Get PDF
    There is no abstract available. (Also cross-referenced as UMIACS-TR-99-73

    Role of Lipids on Entry and Exit of Bluetongue Virus, a Complex Non-Enveloped Virus

    Get PDF
    Non-enveloped viruses such as members of Picornaviridae and Reoviridae are assembled in the cytoplasm and are generally released by cell lysis. However, recent evidence suggests that some non-enveloped viruses exit from infected cells without lysis, indicating that these viruses may also utilize alternate means for egress. Moreover, it appears that complex, non-enveloped viruses such as bluetongue virus (BTV) and rotavirus interact with lipids during their entry process as well as with lipid rafts during the trafficking of newly synthesized progeny viruses. This review will discuss the role of lipids in the entry, maturation and release of non-enveloped viruses, focusing mainly on BTV

    Bluetongue virus outer capsid protein VP5 interacts with membrane lipid rafts via a SNARE domain.

    No full text
    Bluetongue virus (BTV) is a nonenveloped double-stranded RNA virus belonging to the family Reoviridae. The two outer capsid proteins, VP2 and VP5, are responsible for virus entry. However, little is known about the roles of these two proteins, particularly VP5, in virus trafficking and assembly. In this study, we used density gradient fractionation and methyl beta cyclodextrin, a cholesterol-sequestering drug, to demonstrate not only that VP5 copurifies with lipid raft domains in both transfected and infected cells, but also that raft domain integrity is required for BTV assembly. Previously, we showed that BTV nonstructural protein 3 (NS3) interacts with VP2 and also with cellular exocytosis and ESCRT pathway proteins, indicating its involvement in virus egress (A. R. Beaton, J. Rodriguez, Y. K. Reddy, and P. Roy, Proc. Natl. Acad. Sci. USA 99:13154-13159, 2002; C. Wirblich, B. Bhattacharya, and P. Roy J. Virol. 80:460-473, 2006). Here, we show by pull-down and confocal analysis that NS3 also interacts with VP5. Further, a conserved membrane-docking domain similar to the motif in synaptotagmin, a protein belonging to the SNARE (soluble N-ethylmaleimide-sensitive fusion attachment protein receptor) family was identified in the VP5 sequence. By site-directed mutagenesis, followed by flotation and confocal analyses, we demonstrated that raft association of VP5 depends on this domain. Together, these results indicate that VP5 possesses an autonomous signal for its membrane targeting and that the interaction of VP5 with membrane-associated NS3 might play an important role in virus assembly

    Trafficking of bluetongue virus visualized by recovery of tetracysteine-tagged virion particles.

    No full text
    UNLABELLED: Bluetongue virus (BTV), a member of the Orbivirus genus in the Reoviridae family, is a double-capsid insect-borne virus enclosing a genome of 10 double-stranded RNA segments. Like those of other members of the family, BTV virions are nonenveloped particles containing two architecturally complex capsids. The two proteins of the outer capsid, VP2 and VP5, are involved in BTV entry and in the delivery of the transcriptionally active core to the cell cytoplasm. Although the importance of the endocytic pathway in BTV entry has been reported, detailed analyses of entry and the role of each protein in virus trafficking have not been possible due to the lack of availability of a tagged virus. Here, for the first time, we report on the successful manipulation of a segmented genome of a nonenveloped capsid virus by the introduction of tags that were subsequently fluorescently visualized in infected cells. The genetically engineered fluorescent BTV particles were observed to enter live cells immediately after virus adsorption. Further, we showed the separation of VP2 from VP5 during virus entry and confirmed that while VP2 is shed from virions in early endosomes, virus particles still consisting of VP5 were trafficked sequentially from early to late endosomes. Since BTV infects both mammalian and insect cells, the generation of tagged viruses will allow visualization of the trafficking of BTV farther downstream in different host cells. In addition, the tagging technology has potential for transferable application to other nonenveloped complex viruses. IMPORTANCE: Live-virus trafficking in host cells has been highly informative on the interactions between virus and host cells. Although the insertion of fluorescent markers into viral genomes has made it possible to study the trafficking of enveloped viruses, the physical constraints of architecturally complex capsid viruses have imposed practical limitations. In this study, we have successfully genetically engineered the segmented RNA genome of bluetongue virus (BTV), a complex nonenveloped virus belonging to the Reoviridae family. The resulting fluorescent virus particles could be visualized in virus entry studies of both live and fixed cells. This is the first time a structurally complex capsid virus has been successfully genetically manipulated to generate virus particles that could be visualized in infected cells

    Design space exploration for a wireless protocol on a reconfigurable platform

    No full text
    This paper describes a design space exploration experiment for a real application from the embedded networking domain - the physical layer of a wireless protocol. The application models both control oriented as well as data processing functions, and hence requires composing tasks from different models of computation. We show how the cost and performance of communication and computation can be quickly evaluated, with a reasonable modeling cost. While the example uses a specific tool, the methodology and results can be used in a more general context
    corecore