6,068 research outputs found
Numerical study of surface tension driven convection in thermal magnetic fluids
Microgravity conditions pose unique challenges for fluid handling and heat transfer applications. By controlling (curtailing or augmenting) the buoyant and thermocapillary convection, the latter being the dominant convective flow in a microgravity environment, significant advantages can be achieved in space based processing. The control of this surface tension gradient driven flow is sought using a magnetic field, and the effects of these are studied computationally. A two-fluid layer system, with the lower fluid being a non-conducting ferrofluid, is considered under the influence of a horizontal temperature gradient. To capture the deformable interface, a numerical method to solve the Navier???Stokes equations, heat equations, and Maxwell???s equations was developed using a hybrid level set/ volume-of-fluid technique. The convective velocities and heat fluxes were studied under various regimes of the thermal Marangoni number Ma, the external field represented by the magnetic Bond number Bom, and various gravity levels, Fr. Regimes where the convection were either curtailed or augmented were identified. It was found that the surface force due to the step change in the magnetic permeability at the interface could be suitably utilized to control the instability at the interface.published or submitted for publicationis peer reviewe
Unzipping DNA by force: thermodynamics and finite size behaviour
We discuss the thermodynamic behaviour near the force induced unzipping
transition of a double stranded DNA in two different ensembles. The Y-fork is
identified as the coexisting phases in the fixed distance ensemble. From finite
size scaling of thermodynamic quantities like the extensibility, the length of
the unzipped segment of a Y-fork, the phase diagram can be recovered. We
suggest that such procedures could be used to obtain the thermodynamic phase
diagram from experiments on finite length DNA.Comment: 10 pages, accepted for publication in special issue of Journal of
Physics: Condensed Matte
Ge growth on ion-irradiated Si self-affine fractal surfaces
We have carried out scanning tunneling microscopy experiments under ultrahigh
vacuum condition to study the morphology of ultrathin Ge films eposited on
pristine Si(100) and ion-irradiated Si(100) self-affine fractal surfaces. The
pristine and the ion-irradiated Si(100) surface have roughness exponents of
alpha=0.19+/-0.05 and alpha=0.82+/-0.04 respectively. These measurements were
carried out on two halves of the same sample where only one half was
ion-irradiated. Following deposition of a thin film of Ge (~6 A) the roughness
exponents change to 0.11+/-0.04 and 0.99+/-0.06, respectively. Upon Ge
deposition, while the roughness increases by more than an order of magnitude on
the pristine surface, a smoothing is observed for the ion-irradiated surface.
For the ion-irradiated surface the correlation length xi increases from 32 nm
to 137 nm upon Ge deposition. Ge grows on Si surfaces in the Stranski-Krastanov
or layer-plus-island mode where islands grow on a wetting layer of about three
atomic layers. On the pristine surface the islands are predominantly of square
or rectangular shape, while on the ion-irradiated surface the islands are
nearly diamond shaped. Changes of adsorption behaviour of deposited atoms
depending on the roughness exponent (or the fractal dimension) of the substrate
surface are discussed.Comment: 5 pages, 2 figures and 1 tabl
Global Persistence Exponent in Critical Dynamics: Finite Size induced Crossover
We extend the definition of a global order parameter to the case of a
critical system confined between two infinite parallel plates separated by a
finite distance . For a quench to the critical point we study the
persistence property of the global order parameter and show that there is a
crossover behaviour characterized by a non universal exponent which depends on
the ratio of the system size to a dynamic length scale
A New process for the enrichment of nickel in Sukinda chromite overburden ore
Chrontite Over Burden (COB) ore from .Sukinda taller, Orissa is too lean in nickel concentration to he exploited for the extraction of nickel. The average nickel concentration in the COB ore lies in the range of 0.4-0.6%. An acid leaching route at atmospheric prsssure has been developed for screening out silica as insoluble. Metal values in the leach liquor are retrieved as hydroxides by appropriate manoeuvring of pH. The metal hydroxides are converted to corresponding oxides by calcining at 900°C. The resultant nickel content in the mixed oxide has been consistent1 ' .found to he 1.6% and above. This product star he directly used as a starting material for the preparation of ferro-nickel
Optical Phonon Limited High Field Transport in Layered Materials
An optical phonon limited velocity model has been employed to investigate
high-field transport in a selection of layered 2D materials for both, low-power
logic switches with scaled supply voltages, and high-power, high-frequency
transistors. Drain currents, effective electron velocities and intrinsic
cut-off frequencies as a function of carrier density have been predicted thus
providing a benchmark for the optical phonon limited high-field performance
limits of these materials. The optical phonon limited carrier velocities of a
selection of transition metal dichalcogenides and black phosphorus are found to
be modest as compared to their n-channel silicon counterparts, questioning the
utility of these devices in the source-injection dominated regime. h-BN, at the
other end of the spectrum, is shown to be a very promising material for
high-frequency high-power devices, subject to experimental realization of high
carrier densities, primarily due to its large optical phonon energy.
Experimentally extracted saturation velocities from few-layer MoS2 devices show
reasonable qualitative and quantitative agreement with predicted values.
Temperature dependence of measured vsat is discussed and found to fit a
velocity saturation model with a single material dependent fit parameter.Comment: 8 pages, 6 figure
Finite Size Effect in Persistence
We have investigated the random walk problem in a finite system and studied
the crossover induced in the the persistence probability scales by the system
size.Analytical and numerical work show that the scaling function is an
exponentially decaying function.The particle here is trapped with in a box of
size . We have also considered the problem when the particle in trapped in
a potential. Direct calculation and numerical result show that the scaling
function here also an exponentially decaying function. We also present
numerical works on harmonically trapped randomly accelerated particle and
randomly accelerated particle with viscous drag.Comment: revtex4, 4 pages, 4 figure
- …