460 research outputs found

    Reunion of random walkers with a long range interaction: applications to polymers and quantum mechanics

    Get PDF
    We use renormalization group to calculate the reunion and survival exponents of a set of random walkers interacting with a long range 1/r21/r^2 and a short range interaction. These exponents are used to study the binding-unbinding transition of polymers and the behavior of several quantum problems.Comment: Revtex 3.1, 9 pages (two-column format), 3 figures. Published version (PRE 63, 051103 (2001)). Reference corrections incorporated (PRE 64, 059902 (2001) (E

    Transport across nanogaps using semiclassically consistent boundary conditions

    Full text link
    Charge particle transport across nanogaps is studied theoretically within the Schrodinger-Poisson mean field framework and the existence of limiting current investigated. It is shown that the choice of a first order WKB wavefunction as the transmitted wave leads to self consistent boundary conditions and gives results that are significantly different in the non-classical regime from those obtained using a plane transmitted wave. At zero injection energies, the quantum limiting current density, J_c, is found to obey the local scaling law J_c ~ (V_g)^alpha/(D)^{5-2alpha} with the gap separation D and voltage V_g. The exponent alpha > 1.1 with alpha --> 3/2 in the classical regime of small de Broglie wavelengths. These results are consistent with recent experiments using nanogaps most of which are found to be in a parameter regime where classical space charge limited scaling holds away from the emission dominated regime.Comment: 4 pages, 4 ps figure

    Dissipative collisions in 16^{16}O + 27^{27}Al at Elab_{lab}=116 MeV

    Full text link
    The inclusive energy distributions of fragments (3\leqZ\leq7) emitted in the reaction 16^{16}O + 27^{27}Al at Elab=E_{lab} = 116 MeV have been measured in the angular range θlab\theta_{lab} = 15^\circ - 115^\circ. A non-linear optimisation procedure using multiple Gaussian distribution functions has been proposed to extract the fusion-fission and deep inelastic components of the fragment emission from the experimental data. The angular distributions of the fragments, thus obtained, from the deep inelastic component are found to fall off faster than those from the fusion-fission component, indicating shorter life times of the emitting di-nuclear systems. The life times of the intermediate di-nuclear configurations have been estimated using a diffractive Regge-pole model. The life times thus extracted (15×1022\sim 1 - 5\times 10^{-22} Sec.) are found to decrease with the increase in the fragment charge. Optimum Q-values are also found to increase with increasing charge transfer i.e. with the decrease in fragment charge.Comment: 9 pages, 4 figures, 1 tabl

    Ultra-High Energy Cosmic Rays from Neutrino Emitting Acceleration Sources?

    Get PDF
    We demonstrate by numerical flux calculations that neutrino beams producing the observed highest energy cosmic rays by weak interactions with the relic neutrino background require a non-uniform distribution of sources. Such sources have to accelerate protons at least up to 10^{23} eV, have to be opaque to their primary protons, and should emit the secondary photons unavoidably produced together with the neutrinos only in the sub-MeV region to avoid conflict with the diffuse gamma-ray background measured by the EGRET experiment. Even if such a source class exists, the resulting large uncertainties in the parameters involved in this scenario does currently not allow to extract any meaningful information on absolute neutrino masses.Comment: 6 pages, 4 figures, RevTeX styl

    Large Scale Magnetic Fields and the Number of Cosmic Ray Sources above 10^(19) eV

    Get PDF
    We present numerical simulations for the two-point correlation function and the angular power spectrum of nucleons above 10^{19} injected by a discrete distribution of sources following a simple approximation to the profile of the Local Supercluster. We develop a method to constrain the number of sources necessary to reproduce the observed sky distribution of ultra-high energy cosmic rays, as a function of the strength of the large scale cosmic magnetic fields in the Local Supercluster. While for fields B < 0.05 micro Gauss the Supercluster source distribution is inconsistent with the data for any number of sources, fields of strength B~0.3 micro Gauss could reproduce the observed data with a number of sources around 10.Comment: 10 latex pages, 17 postscript figures include

    Ultra-High Energy Neutrino Fluxes and Their Constraints

    Full text link
    Applying our recently developed propagation code we review extragalactic neutrino fluxes above 10^{14} eV in various scenarios and how they are constrained by current data. We specifically identify scenarios in which the cosmogenic neutrino flux, produced by pion production of ultra high energy cosmic rays outside their sources, is considerably higher than the "Waxman-Bahcall bound". This is easy to achieve for sources with hard injection spectra and luminosities that were higher in the past. Such fluxes would significantly increase the chances to detect ultra-high energy neutrinos with experiments currently under construction or in the proposal stage.Comment: 11 pages, 15 figures, version published in Phys.Rev.

    Soliton Lattices in the Incommensurate Spin-Peierls Phase: Local Distortions and Magnetizations

    Full text link
    It is shown that nonadiabatic fluctuations of the soliton lattice in the spin-Peierls system CuGeO_3 lead to an important reduction of the NMR line widths. These fluctuations are the zero-point motion of the massless phasonic excitations. Furthermore, we show that the discrepancy of X-ray and NMR soliton widths can be understood as the difference between a distortive and a magnetic width. Their ratio is controlled by the frustration of the spin system. By this work, theoretical and experimental results can be reconciled in two important points.Comment: 9 pages, 5 figures included, Revtex submitted to Physical Review

    Extragalactic Sources for Ultra High Energy Cosmic Ray Nuclei

    Full text link
    In this article we examine the hypothesis that the highest energy cosmic rays are complex nuclei from extragalactic sources. Under reasonable physical assumptions, we show that the nearby metally rich starburst galaxies (M82 and NGC 253) can produce all the events observed above the ankle. This requires diffusion of particles below 102010^{20} eV in extragalactic magnetic fields B15B \approx 15 nG. Above 101910^{19} eV, the model predicts the presence of significant fluxes of medium mass and heavy nuclei with small rate of change of composition. Notwithstanding, the most salient feature of the starburst-hypothesis is a slight anisotropy induced by iron debris just before the spectrum-cutoff.Comment: To appear in Phys. Rev. D, reference adde

    Anisotropy at the end of the cosmic ray spectrum?

    Full text link
    The starburst galaxies M82 and NGC253 have been proposed as the primary sources of cosmic rays with energies above 1018.710^{18.7} eV. For energies \agt 10^{20.3} eV the model predicts strong anisotropies. We calculate the probabilities that the latter can be due to chance occurrence. For the highest energy cosmic ray events in this energy region, we find that the observed directionality has less than 1% probability of occurring due to random fluctuations. Moreover, during the first 5 years of operation at Auger, the observation of even half the predicted anisotropy has a probability of less than 10510^{-5} to occur by chance fluctuation. Thus, this model can be subject to test at very small cost to the Auger priors budget and, whatever the outcome of that test, valuable information on the Galactic magnetic field will be obtained.Comment: Final version to be published in Physical Review

    Nearby quasar remnants and ultra-high energy cosmic rays

    Get PDF
    As recently suggested, nearby quasar remnants are plausible sites of black-hole based compact dynamos that could be capable of accelerating ultra-high energy cosmic rays (UHECRs). In such a model, UHECRs would originate at the nuclei of nearby dead quasars, those in which the putative underlying supermassive black holes are suitably spun-up. Based on galactic optical luminosity, morphological type, and redshift, we have compiled a small sample of nearby objects selected to be highly luminous, bulge-dominated galaxies, likely quasar remnants. The sky coordinates of these galaxies were then correlated with the arrival directions of cosmic rays detected at energies >40> 40 EeV. An apparently significant correlation appears in our data. This correlation appears at closer angular scales than those expected when taking into account the deflection caused by typically assumed IGM or galactic magnetic fields over a charged particle trajectory. Possible scenarios producing this effect are discussed, as is the astrophysics of the quasar remnant candidates. We suggest that quasar remnants be also taken into account in the forthcoming detailed search for correlations using data from the Auger Observatory.Comment: 2 figures, 4 tables, 11 pages. Final version to appear in Physical Review
    corecore