4,144 research outputs found

    Hopping Conduction in Uniaxially Stressed Si:B near the Insulator-Metal Transition

    Full text link
    Using uniaxial stress to tune the critical density near that of the sample, we have studied in detail the low-temperature conductivity of p-type Si:B in the insulating phase very near the metal-insulator transition. For all values of temperature and stress, the conductivity collapses onto a single universal scaling curve. For large values of the argument, the scaling function is well fit by the exponentially activated form associated with variable range hopping when electron-electron interactions cause a soft Coulomb gap in the density of states at the Fermi energy. The temperature dependence of the prefactor, corresponding to the T-dependence of the critical curve, has been determined reliably for this system, and is proportional to the square-root of T. We show explicitly that nevlecting the prefactor leads to substantial errors in the determination of the scaling parameters and the critical exponents derived from them. The conductivity is not consistent with Mott variable-range hopping in the critical region nor does it obey this form for any range of the parameters. Instead, for smaller argument of the scaling function, the conductivity of Si:B is well fit by an exponential form with exponent 0.31 related to the critical exponents of the system at the metal- insulator transition.Comment: 13 pages, 6 figure

    Gauge Theory for Quantum Spin Glasses

    Full text link
    The gauge theory for random spin systems is extended to quantum spin glasses to derive a number of exact and/or rigorous results. The transverse Ising model and the quantum gauge glass are shown to be gauge invariant. For these models, an identity is proved that the expectation value of the gauge invariant operator in the ferromagnetic limit is equal to the one in the classical equilibrium state on the Nishimori line. As a result, a set of inequalities for the correlation function are proved, which restrict the location of the ordered phase. It is also proved that there is no long-range order in the two-dimensional quantum gauge glass in the ground state. The phase diagram for the quantum XY Mattis model is determined.Comment: 15 pages, 2 figure

    Glassy Roughness of a Crystalline Surface Upon a Disordered Substrate

    Full text link
    The discrete Gaussian model for the surface of a crystal deposited on a disordered substrate is studied by Monte Carlo simulations. A continuous transition is found from a phase with a thermally-induced roughness to a glassy one in which the roughness is driven by the disorder. The behavior of the height-height correlations is consistent with the one-step replica symmetry broken solution of the variational approximation. The results differ from the renormalization group predictions and from recent simulations of a 2D vortex-glass model which belongs to the same universality class.Comment: 12 pages (RevTeX) & 3 figures (PS) uuencode

    Spin Waves in Disordered III-V Diluted Magnetic Semiconductors

    Full text link
    We propose a new scheme for numerically computing collective-mode spectra for large-size systems, using a reformulation of the Random Phase Approximation. In this study, we apply this method to investigate the spectrum and nature of the spin-waves of a (III,Mn)V Diluted Magnetic Semiconductor. We use an impurity band picture to describe the interaction of the charge carriers with the local Mn spins. The spin-wave spectrum is shown to depend sensitively on the positional disorder of the Mn atoms inside the host semiconductor. Both localized and extended spin-wave modes are found. Unusual spin and charge transport is implied.Comment: 14 pages, including 11 figure

    Universality at integer quantum Hall transitions

    Full text link
    We report in this paper results of experimental and theoretical studies of transitions between different integer quantum Hall phases, as well as transition between the insulating phase and quantum Hall phases at high magnetic fields. We focus mainly on universal properties of the transitions. We demonstrate that properly defined conductivity tensor is universal at the transitions. We also present numerical results of a non-interacting electron model, which suggest that the Thouless conductance is universal at integer quantum Hall transitions, just like the conductivity tensor. Finite temperature and system size effects near the transition point are also studied.Comment: 20 pages, 15 figure

    The Lower Critical Dimension of the XY Spin Glass

    Full text link
    We investigate the XY spin-glass model in two and three dimensions using the domain-wall renormalization-group method. The results for systems of linear sizes up to L=12 (2D) and L=8 (3D) strongly suggest that the lower critical dimension for spin-glass ordering may be dc3d_{c}\approx 3 rather than four as is commonly believed. Our 3D data favor the scenario of a low but finite spin-glass ordering temperature below the chiral transition but they are also compatible with the system being at or slightly below its lower critical dimension.Comment: 4 pages, 3 ps figures. Typos have been corrected, one reference has been added and the concluding paragraph has been expanded. To appear in Phys. Rev. Let

    Zonation of intertidal organisms on the rocky shores of Bombay

    Get PDF
    Zonation of intertidal organisms on the rocky shores of Cuffe Parade, Chowpathy, Breach Candy and Mahim around Bombay was studied. In all the four shores it was possible to recognise the following general pattern of zonation. (i) Upper littoral zone dominated by httorinids-four littorinid species were abundant in all the four localities. Major species showed definite vertical zonation. (ii) Mid littoral zone characterised by barnacles and oysters, was divisible into three or four belts-dominated by distinct set of animals. (iii) Lower littoral zone (wide zone), had a large number of species and maximum number of animals-trochids in general dominated this zone

    Monte Carlo simulations of an impurity band model for III-V diluted magnetic semiconductors

    Full text link
    We report the results of a Monte Carlo study of a model of (III,Mn)V diluted magnetic semiconductors which uses an impurity band description of carriers coupled to localized Mn spins and is applicable for carrier densities below and around the metal-insulator transition. In agreement with mean field studies, we find a transition to a ferromagnetic phase at low temperatures. We compare our results for the magnetic properties with the mean field approximation, as well as with experiments, and find favorable qualitative agreement with the latter. The local Mn magnetization below the Curie temperature is found to be spatially inhomogeneous, and strongly correlated with the local carrier charge density at the Mn sites. The model contains fermions and classical spins and hence we introduce a perturbative Monte Carlo scheme to increase the speed of our simulations.Comment: 17 pages, 24 figures, 2 table

    Exchange anisotropy, disorder and frustration in diluted, predominantly ferromagnetic, Heisenberg spin systems

    Full text link
    Motivated by the recent suggestion of anisotropic effective exchange interactions between Mn spins in Ga1x_{1-x}Mnx_xAs (arising as a result of spin-orbit coupling), we study their effects in diluted Heisenberg spin systems. We perform Monte Carlo simulations on several phenomenological model spin Hamiltonians, and investigate the extent to which frustration induced by anisotropic exchanges can reduce the low temperature magnetization in these models and the interplay of this effect with disorder in the exchange. In a model with low coordination number and purely ferromagnetic (FM) exchanges, we find that the low temperature magnetization is gradually reduced as exchange anisotropy is turned on. However, as the connectivity of the model is increased, the effect of small-to-moderate anisotropy is suppressed, and the magnetization regains its maximum saturation value at low temperatures unless the distribution of exchanges is very wide. To obtain significant suppression of the low temperature magnetization in a model with high connectivity, as is found for long-range interactions, we find it necessary to have both ferromagnetic and antiferromagnetic (AFM) exchanges (e.g. as in the RKKY interaction). This implies that disorder in the sign of the exchange interaction is much more effective in suppressing magnetization at low temperatures than exchange anisotropy.Comment: 9 pages, 8 figure

    Perturbation-based balance training: Principles, mechanisms and implementation in clinical practice

    Get PDF
    Since the mid-2000s, perturbation-based balance training has been gaining interest as an efficient and effective way to prevent falls in older adults. It has been suggested that this task-specific training approach may present a paradigm shift in fall prevention. In this review, we discuss key concepts and common issues and questions regarding perturbation-based balance training. In doing so, we aim to provide a comprehensive synthesis of the current evidence on the mechanisms, feasibility and efficacy of perturbation-based balance training for researchers and practitioners. We address this in two sections: “Principles and Mechanisms” and “Implementation in Practice.” In the first section, definitions, task-specificity, adaptation and retention mechanisms and the dose-response relationship are discussed. In the second section, issues related to safety, anxiety, evidence in clinical populations (e.g., Parkinson's disease, stroke), technology and training devices are discussed. Perturbation-based balance training is a promising approach to fall prevention. However, several fundamental and applied aspects of the approach need to be further investigated before it can be widely implemented in clinical practice
    corecore