13,667 research outputs found

    The Advantage of Foraging Myopically

    Full text link
    We study the dynamics of a \emph{myopic} forager that randomly wanders on a lattice in which each site contains one unit of food. Upon encountering a food-containing site, the forager eats all the food at this site with probability p<1p<1; otherwise, the food is left undisturbed. When the forager eats, it can wander S\mathcal{S} additional steps without food before starving to death. When the forager does not eat, either by not detecting food on a full site or by encountering an empty site, the forager goes hungry and comes one time unit closer to starvation. As the forager wanders, a multiply connected spatial region where food has been consumed---a desert---is created. The forager lifetime depends non-monotonically on its degree of myopia pp, and at the optimal myopia p=p(S)p=p^*(\mathcal{S}), the forager lives much longer than a normal forager that always eats when it encounters food. This optimal lifetime grows as S2/lnS\mathcal{S}^2/\ln\mathcal{S} in one dimension and faster than a power law in S\mathcal{S} in two and higher dimensions.Comment: 10 pages, 1o figure

    Relevance of cosmic gamma rays to the mass of gas in the galaxy

    Get PDF
    The bulk of the diffuse gamma-ray flux comes from cosmic ray interactions in the interstellar medium. A knowledge of the large scale spatial distribution of the Galactic gamma-rays and the cosmic rays enables the distribution of the target gas to be examined. An approach of this type is used here to estimate the total mass of the molecular gas in the galaxy. It is shown to be much less than that previously derived, viz., approximately 6 x 10 to the 8th power solar masses within the solar radius as against approximately 3 x 10 to the 9th power based on 2.6 mm CO measurements

    Excess gamma rays from the Loop I supernova remnant

    Get PDF
    Evidence is presented for an excess of cosmic ray intensity within the Loop I supernova remnant based on an interpretation of the observed distribution of gamma-rays across the remnant and the column densities of the associated gas. A strong case can thus be made for the bulk of the cosmic radiation (E , 10 to the 11th power eV) being produced in the Galactic supernova remnants

    Long term variability of the cosmic ray intensity

    Get PDF
    In a previous paper Bhat, et al., assess the evidence for the continuing acceleration of cosmic rays in the Loop I supernova remnant. The enhanced gamma-ray emission is found consistent with the Blandford and Cowie model for particle acceleration at the remnant shock wave. The contributions of other supernovae remnants to the galactic cosmic ray energy density are now considered, paying anisotropy of cosmic rays accelerated by local supernovae ( 100 pc). The results are compared with geophysical data on the fluctuations in the cosmic ray intensity over the previous one billion years

    Non-resonant microwave absorption studies of superconducting MgB_2

    Get PDF
    Non-resonant microwave absorption(NRMA) studies of superconducting MgB_2 at a frequency of 9.43 GHz in the field range -50 Gauss to 5000 Gauss are reported. The NRMA results indicate near absence of intergranular weak links. A linear temperature dependence of the lower critical field H_c1 is observed indicating a non s-wave superconductivity. However, the phase reversal of the NRMA signal which could suggest d-wave symmetry is also not observed.Comment: 8 pages, 2 figure

    Evidence for long-term variability in the ultra high energy photon flux from Cygnus X-3

    Get PDF
    A time-correlation analysis of atmospheric Cerenkov pulses by a wide-angle photomultiplier system was previously shown to have present in it a nonrandom component which seemed associated with the Right Ascension (RA) range approx. 20+or-04h. A recent examination of multi-muon events recorded by a photon-decay detector shows a similar time-dependent effect, closely matching the previous results, supporting the suggestion that the effect is of cosmic origin. However, even though Cyg. X-3 lies well inside the region of peak intensity, it does not seem possible to ascribe to it the whole effect, for the implied photon flux appears too large to be reconciled to various gamma-ray measurements of Cyg. X-3. The original data were subjected to a phase-histogram analysis and it as found that only 2.5% of overall recorded data are compatible with a phase-dependent emission from Cyg. X-3. Assuming these events to be gamma rays yields a detected flux of (2.6 + or - 0.3) x 10 to the minus 12th power gamma cm -2s-1 above 5 x 10 to the 14th power eV. Comparing this value with more recent ultra high energy (UHE) photon data from the same source, it is suggested that the available data generally favor a long-term reduction in the Cyg. X-3 inferred luminosity ( 10 to the 13th power eV) by a factor of (1.8 + or - 0.3) per year

    Transverse instability of the antiproton beam in the Recycler Ring

    Get PDF
    The brightness of the antiproton beam in Fermilab's 8 GeV Recycler ring is limited by a transverse instability. This instability has occurred during the extraction process to the Tevatron for large stacks of antiprotons even with dampers in operation. This paper describes observed features of the instability, introduces the threshold phase density to characterize the beam stability, and finds the results to be in agreement with a resistive wall instability model. Effective exclusion of the longitudinal tails from Landau damping by decreasing the depth of the RF potential well is observed to lower the threshold density by up to a factor of two.Comment: 3 pp. Particle Accelerator, 24th Conference (PAC'11) 2011. 28 Mar - 1 Apr 2011. New York, US
    corecore