100 research outputs found
Antioxidant-mediated up-regulation of OGG1 via NRF2 induction is associated with inhibition of oxidative DNA damage in estrogen-induced breast cancer
Abstract
Background
Estrogen metabolism-mediated oxidative stress is suggested to play an important role in estrogen-induced breast carcinogenesis. We have earlier demonstrated that antioxidants, vitamin C (Vit C) and butylated hydroxyanisole (BHA) inhibit 17β-estradiol (E2)-mediated oxidative stress and oxidative DNA damage, and breast carcinogenesis in female August Copenhagen Irish (ACI) rats. The objective of the present study was to characterize the mechanism by which above antioxidants prevent DNA damage during breast carcinogenesis.
Methods
Female ACI rats were treated with E2; Vit C; Vit C + E2; BHA; and BHA + E2 for up to 240 days. mRNA and protein levels of a DNA repair enzyme 8-Oxoguanine DNA glycosylase (OGG1) and a transcription factor NRF2 were quantified in the mammary and mammary tumor tissues of rats after treatment with E2 and compared with that of rats treated with antioxidants either alone or in combination with E2.
Results
The expression of OGG1 was suppressed in mammary tissues and in mammary tumors of rats treated with E2. Expression of NRF2 was also significantly suppressed in E2-treated mammary tissues and in mammary tumors. Vitamin C or BHA treatment prevented E2-mediated decrease in OGG1 and NRF2 levels in the mammary tissues. Chromatin immunoprecipitation analysis confirmed that antioxidant-mediated induction of OGG1 was through increased direct binding of NRF2 to the promoter region of OGG1. Studies using silencer RNA confirmed the role of OGG1 in inhibition of oxidative DNA damage.
Conclusions
Our studies suggest that antioxidants Vit C and BHA provide protection against oxidative DNA damage and E2-induced mammary carcinogenesis, at least in part, through NRF2-mediated induction of OGG1.Peer Reviewe
Recommended from our members
Placental biomarkers of phthalate effects on mRNA transcription: application in epidemiologic research
<p>Abstract</p> <p>Background</p> <p>CYP19 and PPARγ are two genes expressed in the placental trophoblast that are important to placental function and are disrupted by phthalate exposure in other cell types. Measurement of the mRNA of these two genes in human placental tissue by quantitative real-time polymerase chain reaction (qPCR) offers a source of potential biomarkers for use in epidemiologic research. We report on methodologic challenges to be considered in study design.</p> <p>Methods</p> <p>We anonymously collected 10 full-term placentas and, for each, sampled placental villi at 12 sites in the chorionic plate representing the inner (closer to the cord insertion site) and outer regions. Each sample was analyzed for the expression of two candidate genes, aromatase (CYP19) and peroxisome proliferator activated receptor protein gamma (PPARγ) and three potential internal controls: cyclophilin (CYC), 18S rRNA (18S), and total RNA. Between and within placenta variability was estimated using variance component analysis. Associations of expression levels with sampling characteristics were estimated using mixed effects models.</p> <p>Results</p> <p>We identified large within-placenta variability in both transcripts (>90% of total variance) that was minimized to <20% of total variance by using 18S as an internal control and by modelling the means by inner and outer regions. 18S rRNA was the most appropriate internal control based on within and between placenta variability estimates and low correlations of 18S mRNA with target gene mRNA. Gene expression did not differ significantly by delivery method. We observed decreases in the expression of both transcripts over the 25 minute period after delivery (CYP19 p-value for trend = 0.009 and PPARγ (p-value for trend = 0.002). Using histologic methods, we confirmed that our samples were comprised predominantly of villous tissue of the fetal placenta with minimal contamination of maternally derived cell types.</p> <p>Conclusion</p> <p>qPCR-derived biomarkers of placental CYP19 and PPARγ gene expression show high within-placental variability. Sampling scheme, selection of an appropriate internal control and the timing of sample collection relative to delivery can be optimized to minimize within-placenta and other sources of underlying, non-etiologic variability.</p
Recommended from our members
Transcriptional Biomarkers of Steroidogenesis and Trophoblast Differentiation in the Placenta in Relation to Prenatal Phthalate Exposure
Background: Phthalates can alter steroidogenesis and peroxisome proliferator–activated receptor gamma (PPARγ)–mediated transcription in rodent tissues. The placenta offers a rich source of biomarkers to study these relationships in humans. Objective: We evaluated whether gestational phthalate exposures in humans were associated with altered human placental steroidogenesis and trophoblast differentiation as measured by markers of mRNA transcription. Methods: We measured seven target genes in placentas collected from 54 Dominican and African-American women at delivery in New York City using quantitative real-time polymerase chain reaction (qPCR), normalized to 18S rRNA. qPCR results for the target genes were log-transformed, converted to Z-scores, and grouped into two functional pathways: steroidogenesis (aromatase, cholesterol side chain cleavage enzyme, 17β-hydroxysteroid dehydrogenase type 1, and cytochrome P450 1B1) and trophoblast differentiation (PPARγ, aryl hydrocarbon receptor, and human chorionic gonadotropin). Repeated measures models were used to evaluate the association of phthalate metabolites measured in third-trimester urine samples with each group of target genes, accounting for correlation among the genes within a pathway. Results: Higher urinary concentrations of five phthalate metabolites were associated with lower expression of the target genes reflecting trophoblast differentiation. Results were less consistent for genes in the steroidogenesis pathway and suggested a nonlinear dose–response pattern for some phthalate metabolites. Conclusions: We observed a significant association between prenatal exposure to phthalates and placental gene expression within two pathways. Further studies are warranted to understand the significance of this association with respect to fetal development and placental function
Characterization of Phthalate Exposure among Pregnant Women Assessed by Repeat Air and Urine Samples
Background: Although urinary concentrations of phthalate metabolites are frequently used as biomarkers in epidemiologic studies, variability during pregnancy has not been characterized. Methods: We measured phthalate metabolite concentrations in spot urine samples collected from 246 pregnant Dominican and African-American women. Twenty-eight women had repeat urine samples collected over a 6-week period. We also analyzed 48-hr personal air samples (n = 96 women) and repeated indoor air samples (n = 32 homes) for five phthalate diesters. Mixed-effects models were fit to evaluate reproducibility via intraclass correlation coefficients (ICC). We evaluated the sensitivity and specificity of using a single specimen versus repeat samples to classify a woman’s exposure in the low or high category. Results: Phthalates were detected in 85–100% of air and urine samples. ICCs for the unadjusted urinary metabolite concentrations ranged from 0.30 for mono-ethyl phthalate to 0.66 for monobenzyl phthalate. For indoor air, ICCs ranged from 0.48 [di-2-ethylhexyl phthalate (DEHP)] to 0.83 [butylbenzyl phthalate (BBzP)]. Air levels of phthalate diesters correlated with their respective urinary metabolite concentrations for BBzP (r = 0.71), di-isobutyl phthalate (r = 0.44), and diethyl phthalate (DEP; r = 0.39). In women sampled late in pregnancy, specific gravity appeared to be more effective than creatinine in adjusting for urine dilution. Conclusions: Urinary concentrations of DEP and DEHP metabolites in pregnant women showed lower reproducibility than metabolites for di-n-butyl phthalate and BBzP. A single indoor air sample may be sufficient to characterize phthalate exposure in the home, whereas urinary phthalate biomarkers should be sampled longitudinally during pregnancy to minimize exposure misclassification
Partial Inhibition of Estrogen-Induced Mammary Carcinogenesis in Rats by Tamoxifen: Balance between Oxidant Stress and Estrogen Responsiveness
Epidemiological and experimental evidences strongly support the role of estrogens in breast tumor development. Both estrogen receptor (ER)-dependent and ER-independent mechanisms are implicated in estrogen-induced breast carcinogenesis. Tamoxifen, a selective estrogen receptor modulator is widely used as chemoprotectant in human breast cancer. It binds to ERs and interferes with normal binding of estrogen to ERs. In the present study, we examined the effect of long-term tamoxifen treatment in the prevention of estrogen-induced breast cancer. Female ACI rats were treated with 17β-estradiol (E2), tamoxifen or with a combination of E2 and tamoxifen for eight months. Tissue levels of oxidative stress markers 8-iso-Prostane F2α (8-isoPGF2α), superoxide dismutase (SOD), glutathione peroxidase (GPx), catalase, and oxidative DNA damage marker 8-hydroxydeoxyguanosine (8-OHdG) were quantified in the mammary tissues of all the treatment groups and compared with age-matched controls. Levels of tamoxifen metabolizing enzymes cytochrome P450s as well as estrogen responsive genes were also quantified. At necropsy, breast tumors were detected in 44% of rats co-treated with tamoxifen+E2. No tumors were detected in the sham or tamoxifen only treatment groups whereas in the E2 only treatment group, the tumor incidence was 82%. Co-treatment with tamoxifen decreased GPx and catalase levels; did not completely inhibit E2-mediated oxidative DNA damage and estrogen-responsive genes monoamine oxygenase B1 (MaoB1) and cell death inducing DFF45 like effector C (Cidec) but differentially affected the levels of tamoxifen metabolizing enzymes. In summary, our studies suggest that although tamoxifen treatment inhibits estrogen-induced breast tumor development and increases the latency of tumor development, it does not completely abrogate breast tumor development in a rat model of estrogen-induced breast cancer. The inability of tamoxifen to completely inhibit E2-induced breast carcinogenesis may be because of increased estrogen-mediated oxidant burden
A multi-centric, single-blinded, randomized, parallel-group study to evaluate the effectiveness of nasoalveolar moulding treatment in non-syndromic patients with complete unilateral cleft lip, alveolus and palate (NAMUC study): a study protocol for a randomized controlled trial.
BACKGROUND
Cleft lip and palate (CLP) are among the most common congenital anomaly that affects up to 33,000 newborns in India every year. Nasoalveolar moulding (NAM) is a non-surgical treatment performed between 0 and 6 months of age to reduce the cleft and improve nasal aesthetics prior to lip surgery. The NAM treatment has been a controversial treatment option with 51% of the cleft teams in Europe, 37% of teams in the USA and 25 of cleft teams in India adopting this methodology. This treatment adds to the already existing high burden of care for these patients. Furthermore, the supporting evidence for this technique is limited with no high-quality long-term clinical trials available on the effectiveness of this treatment.
METHOD
The NAMUC study is an investigator-initiated, multi-centre, single-blinded randomized controlled trial with a parallel group design. The study will compare the effectiveness of NAM treatment provided prior to lip surgery against the no-treatment control group in 274 patients with non-syndromic unilateral complete cleft lip and palate. The primary endpoint of the trial is the nasolabial aesthetics measured using the Asher McDade index at 5 years of age. The secondary outcomes include dentofacial development, speech, hearing, cost-effectiveness, quality of life, patient perception, feeding and intangible benefits. Randomization will be carried out via central online system and stratified based on cleft width, birth weight and clinical trial site.
DISCUSSION
We expect the results from this study on the effectiveness of treatment with NAM appliance in the long term along with the cost-effectiveness evaluation can eliminate the dilemma and differences in clinical care across the globe.
TRIAL REGISTRATION
ClinicalTrials.gov CTRI/2022/11/047426 (Clinical Trials Registry India). Registered on 18 November 2022. The first patient was recruited on 11 December 2022. CTR India does not pick up on Google search with just the trial number. The following steps have to be carried out to pick up. How to search: ( https://ctri.nic.in/Clinicaltrials/advsearch.php -use the search boxes by entering the following details: Interventional trial > November 2022 > NAMUC)
S100A7-Downregulation Inhibits Epidermal Growth Factor-Induced Signaling in Breast Cancer Cells and Blocks Osteoclast Formation
S100A7 is a small calcium binding protein, which has been shown to be differentially expressed in psoriatic skin lesions, as well as in squamous cell tumors of the skin, lung and breast. Although its expression has been correlated to HER+ high-grade tumors and to a high risk of progression, the molecular mechanisms of these S100A7-mediated tumorigenic effects are not well known. Here, we showed for the first time that epidermal growth factor (EGF) induces S100A7 expression in both MCF-7 and MDA-MB-468 cell lines. We also observed a decrease in EGF-directed migration in shRNA-downregulated MDA-MB-468 cell lines. Furthermore, our signaling studies revealed that EGF induced simultaneous EGF receptor phosphorylation at Tyr1173 and HER2 phosphorylation at Tyr1248 in S100A7-downregulated cell lines as compared to the vector-transfected controls. In addition, reduced phosphorylation of Src at tyrosine 416 and p-SHP2 at tyrosine 542 was observed in these downregulated cell lines. Further studies revealed that S100A7-downregulated cells had reduced angiogenesis in vivo based on matrigel plug assays. Our results also showed decreased tumor-induced osteoclastic resorption in an intra-tibial bone injection model involving SCID mice. S100A7-downregulated cells had decreased osteoclast number and size as compared to the vector controls, and this decrease was associated with variations in IL-8 expression in in vitro cell cultures. This is a novel report on the role of S100A7 in EGF-induced signaling in breast cancer cells and in osteoclast formation
HIV-1 gp120 Induces Expression of IL-6 through a Nuclear Factor-Kappa B-Dependent Mechanism: Suppression by gp120 Specific Small Interfering RNA
In addition to its role in virus entry, HIV-1 gp120 has also been implicated in HIV-associated neurocognitive disorders. However, the mechanism(s) responsible for gp120-mediated neuroinflammation remain undefined. In view of increased levels of IL-6 in HIV-positive individuals with neurological manifestations, we sought to address whether gp120 is involved in IL-6 over-expression in astrocytes. Transfection of a human astrocyte cell line with a plasmid encoding gp120 resulted in increased expression of IL-6 at the levels of mRNA and protein by 51.3±2.1 and 11.6±2.2 fold respectively; this effect of gp120 on IL-6 expression was also demonstrated using primary human fetal astrocytes. A similar effect on IL-6 expression was observed when primary astrocytes were treated with gp120 protein derived from different strains of X4 and R5 tropic HIV-1. The induction of IL-6 could be abrogated by use of gp120-specific siRNA. Furthermore, this study showed that the NF-κB pathway is involved in gp120-mediated IL-6 over-expression, as IKK-2 and IKKβ inhibitors inhibited IL-6 expression by 56.5% and 60.8%, respectively. These results were also confirmed through the use of NF-κB specific siRNA. We also showed that gp120 could increase the phosphorylation of IκBα. Furthermore, gp120 transfection in the SVGA cells increased translocation of NF-κB from cytoplasm to nucleus. These results demonstrate that HIV-1 gp120-mediated over-expression of IL-6 in astrocytes is one mechanism responsible for neuroinflammation in HIV-infected individuals and this is mediated by the NF-κB pathway
- …