14,762 research outputs found

    Formal Verification of Safety Properties for Ownership Authentication Transfer Protocol

    Full text link
    In ubiquitous computing devices, users tend to store some valuable information in their device. Even though the device can be borrowed by the other user temporarily, it is not safe for any user to borrow or lend the device as it may cause private data of the user to be public. To safeguard the user data and also to preserve user privacy we propose and model the technique of ownership authentication transfer. The user who is willing to sell the device has to transfer the ownership of the device under sale. Once the device is sold and the ownership has been transferred, the old owner will not be able to use that device at any cost. Either of the users will not be able to use the device if the process of ownership has not been carried out properly. This also takes care of the scenario when the device has been stolen or lost, avoiding the impersonation attack. The aim of this paper is to model basic process of proposed ownership authentication transfer protocol and check its safety properties by representing it using CSP and model checking approach. For model checking we have used a symbolic model checker tool called NuSMV. The safety properties of ownership transfer protocol has been modeled in terms of CTL specification and it is observed that the system satisfies all the protocol constraint and is safe to be deployed.Comment: 16 pages, 7 figures,Submitted to ADCOM 201

    Glassy Dielectric Response in Tb_2NiMnO_6 Double Perovskite with Similarities to a Griffiths Phase

    Full text link
    Frequency-dependent and temperature-dependent dielectric measurements are performed on double perovskite Tb2_2NiMnO6_6. The real (ϵ1\epsilon_1) and imaginary (ϵ2\epsilon_2) parts of dielectric permittivity show three plateaus suggesting dielectric relaxation originating from bulk, grain boundaries and the sample-electrode interfaces respectively. The temperature and frequency variation of ϵ1\epsilon_1 and ϵ2\epsilon_2 are successfully simulated by a RCRC circuit model. The complex plane of impedance, ZZ'-Z"Z", is simulated using a series network with a resistor RR and a constant phase element. Through the analysis of frequency-dependent dielectric constant using modified-Debye model, different relaxation regimes are identified. Temperature dependence of dc conductivity also presents a clear change in slope at, TT^*. Interestingly, TT^* compares with the temperature at which an anomaly occurs in the phonon modes and the Griffiths temperature for this compound. The components RR and CC corresponding to the bulk and the parameter α\alpha from modified-Debye fit tend support to this hypothesis. Though these results cannot be interpreted as magnetoelectric coupling, the relationship between lattice and magnetism is marked.Comment: Accepted in Europhysics Letter

    Extremely wideband signal shaping using one- and two-dimensional nonuniform nonlinear transmission lines

    Get PDF
    We propose a class of electrical circuits for extremely wideband (EWB) signal shaping. A one-dimensional, nonlinear, nonuniform transmission line is proposed for narrow pulse generation. A two-dimensional transmission lattice is proposed for EWB signal combining. Model equations for the circuits are derived. Theoretical and numerical solutions of the model equations are presented, showing that the circuits can be used for the desired application. The procedure by which the circuits are designed exemplifies a modern, mathematical design methodology for EWB circuits

    Analysis of high load dampers

    Get PDF
    High load damping requirements for modern jet engines are discussed. The design of damping systems which could satisfy these requirements is also discusseed. In order to evaluate high load damping requirements, engines in three major classes were studied; large transport engines, small general aviation engines, and military engines. Four damper concepts applicable to these engines were evaluated; multi-ring, cartridge, curved beam, and viscous/friction. The most promising damper concept was selected for each engine and performance was assessed relative to conventional dampers and in light of projected damping requirements for advanced jet engines

    Phase separation in transparent liquid-liquid miscibility gap systems

    Get PDF
    A program to be carried out on transparent liquid-phase miscibility gap materials was developed for the purpose of acquiring additional insight into the separation process occurring in these systems. The transparency feature allows the reaction to be viewed directly through light scattering and holographic methods
    corecore