80 research outputs found

    Sub-diffraction thin-film sensing with planar terahertz metamaterials

    Full text link
    Planar metamaterials have been recently proposed for thin dielectric film sensing in the terahertz frequency range. Although the thickness of the dielectric film can be very small compared with the wavelength, the required area of sensed material is still determined by the diffraction-limited spot size of the terahertz beam excitation. In this article, terahertz near-field sensing is utilized to reduce the spot size. By positioning the metamaterial sensing platform close to the sub-diffraction terahertz source, the number of excited resonators, and hence minimal film area, are significantly reduced. As an additional advantage, a reduction in the number of excited resonators decreases the inter-cell coupling strength, and consequently the resonance Q factor is remarkably increased. The experimental results show that the resonance Q factor is improved by 113%. Moreover, for a film with a thickness of \lambda/375 the minimal area can be as small as 0.2\lambda by 0.2\lambda. The success of this work provides a platform for future metamaterial-based sensors for biomolecular detection.Comment: 8 pages, 6 figure

    Interfacial Resistive Properties of Nickel Silicide Thin Films to Doped Silicon

    Get PDF
    Improved means of electrical access to nanotechnology devices and accurate nanoscale characterization of electrical properties of ultrathin layers constituting such electrical contacts is of utmost interest to nanoelectronics researchers. This paper reports on the characterization of interfacial resistive properties of ohmic contacts to doped silicon, incorporating thin films of nickel silicide. Silicon doping was achieved by carefully designed ion implantation of antimony ͑for n-type͒ and boron ͑for p-type͒. Cross Kelvin resistor test structures were used to extract the specific contact resistivity ͑SCR͒ values for the different ohmic contacts fabricated. SCR values, which are quantitative characteristics of interfacial resistive properties, as low as 5.0 ϫ 10 −9 ⍀ cm 2 for contacts to antimony-doped silicon and 3.5 ϫ 10 −9 ⍀ cm 2 to boron-doped silicon were estimated. These experimental results, representing the lowest such values measured, were based on a rigorous evaluation technique and verified by finite element modeling

    Reconfigurable Image Processing Metasurfaces with Phase-Change Materials

    Full text link
    Optical metasurfaces have been enabling reduced footprint and power consumption, as well as faster speeds, in the context of analog computing and image processing. While various image processing and optical computing functionalities have been recently demonstrated using metasurfaces, most of the considered devices are static and lack reconfigurability. Yet, the ability to dynamically reconfigure processing operations is key for metasurfaces to be able to compete with practical computing systems. Here, we demonstrate a passive edge-detection metasurface operating in the near-infrared regime whose image processing response can be drastically modified by temperature variations smaller than 10{\deg} C around a CMOS-compatible temperature of 65{\deg} C. Such reconfigurability is achieved by leveraging the insulator-to-metal phase transition of a thin buried layer of vanadium dioxide which, in turn, strongly alters the nonlocal response of the metasurface. Importantly, this reconfigurability is accompanied by performance metrics - such as high numerical aperture, high efficiency, isotropy, and polarization-independence - close to optimal, and it is combined with a simple geometry compatible with large-scale manufacturing. Our work paves the way to a new generation of ultra-compact, tunable, passive devices for all-optical computation, with potential applications in augmented reality, remote sensing and bio-medical imaging.Comment: Main text (18 pages, 5 figures), followed by high-resolution vector-graphic versions of the figures and by the Supplementary Informatio

    Mechanically tunable terahertz metamaterials

    Get PDF
    Electromagnetic device design and flexible electronics fabrication are combined to demonstrate mechanically tunable metamaterials operating at terahertz frequencies. Each metamaterial comprises a planar array of resonators on a highly elastic polydimethylsiloxane substrate. The resonance of the metamaterials is controllable through substrate deformation. Applying a stretching force to the substrate changes the inter-cell capacitance and hence the resonance frequency of the resonators. In the experiment, greater than 8% of the tuning range is achieved with good repeatability over several stretching-relaxing cycles. This study promises applications in remote strain sensing and other controllable metamaterial-based devices.Jining Li, Charan M. Shah, Withawat Withayachumnankul, Benjamin S.-Y. Ung, Arnan Mitchell, Sharath Sriram, Madhu Bhaskaran, Shengjiang Chang, and Derek Abbot
    corecore