9 research outputs found

    A study on functional outcome of posterior cruciate ligament substituted total knee arthroplasty

    Get PDF
    Background: Total knee replacement surgery is considered as a treatment of choice in patients with advanced arthritis, especially in patients where conservative treatment has been failed. Total knee replacement gives good pain relief, functional improvement of knee and correction of deformity.Methods: This is study of 39 patients following total knee arthroplasty, who were operated between August 2017 and March 2020 at MNR Medical College and Hospital, Sangareddy. They were followed up for a minimum period of 1 year and evaluated using oxford knee scoring system. Oxford knee score is designed specifically for measuring outcomes in knee arthroplasty. There were 14 right knees, 10 left knees, 15 bilateral knees.Results: There was a significant functional improvement of knee in patients and we had achieved excellent results, out of 39 patients and 4 patients had post op suprapatellar fullness, which was relieved with medications for 3 weeks and 2 patients (2 knees) without no signs of immediate post-operative period, developed infection after 6 months followed which underwent staged revision total knee replacement. The outcome categories based on oxford knee scoring system: excellent (40-48), good (30-39), fair (20-29) and poor (0-19).Conclusions: It is difficult to balance the knee with retention of posterior cruciate ligament, whereas posterior cruciate ligament substituting total knee replacement gives reproducible and good results, hence it is the preferred mode of management

    Improved osteogenic differentiation of umbilical cord blood MSCs using custom made perfusion bioreactor

    No full text
    Background: 3D cell culture is an appropriate method to develop engineered bone tissue, where different bioreactors have been designed to mitigate the challenges in 3D culture. Currently, we tailored a perfusion reactor to witness human mesenchymal stem cells (MSCs) proliferation and differentiation over polylactic acid-polyethylene glycol (PLA/PEG) composite scaffolds. Methods: The composite scaffolds with different weight ratios of PLA and PEG were prepared using solvent casting-particulate leaching technique. Human umbilcal card blood MSCs were cultured under dynamic and static conditions to elucidate the role of dynamic fluid flow in osteogenesis of MSCs. Results: The human MSCs distribution over the scaffolds was confirmed with fluorescent microscopy. Alkaline phosphatase (ALP), calcium mineralization, and collagen formation were found to be higher in PLA90 scaffolds than PLA100 and PLA75. PLA90 scaffolds with better cell adhesion/proliferartion were considered for bioreactor studies and they exhibited enhanced ALP, Ca+2 mineralization and collagen formation under dynamic perfusion than static culture. We further confirmed our observation by looking at expression levels of osteogenic marker (Runx2 and osteonectin) in differentiated MSCs subjected to perfusion culture compared to static culture. Conclusion: The results of the current investigation once again proves that dynamic perfusion cultures improve the osteogenic differentiation of MSCs over hybrid polymer scaffolds (PLA90) for effective bone regeneration. Keywords: 3D cell culture, Mesenchymal stem cells (MSCs), Fluid flow, Osteogenic differentiatio

    Development and Characterization of an In Vitro Round Window Membrane Model for Drug Permeability Evaluations

    No full text
    Hearing loss and balance disorders are highly common disorders, and the development of effective oto-therapeutics remains an area of intense research. Drug development and screening in the hearing research field heavily rely on the use of preclinical models with often ambiguous translational relevance. This often leads to failed advancement in the market of effective therapeutics. In this context, especially for inner ear-specific pathologies, the availability of an in vitro, physiologically relevant, round window membrane (RWM) model could enable rapid, high-throughput screening of potential topical drugs for inner ear and cochlear dysfunctions and could help accelerate the advancement to clinic and market of more viable drug candidates. In this study, we report the development and evaluation of an in vitro model that mimics the native RWM tissue morphology and microenvironment as shown via immunostaining and histological analyses. The developed three-dimensional (3D) in vitro model was additionally assessed for barrier integrity by transepithelial electrical resistance, and the permeability of lipophilic and hydrophilic drugs was determined. Our collective findings suggest that this in vitro model could serve as a tool for rapid development and screening of topically deliverable oto-therapeutics

    An In Vitro Model for Characterization of Drug Permeability across the Tympanic Membrane

    No full text
    Otic disorders, such as otitis media and hearing loss, affect a substantial portion of the global population. Despite this, oto-therapeutics, in particular those intended to treat hearing loss, have seen limited development and innovation. A significant factor to this is likely a result of the inherent costs and complexities of drug discovery and development. With in vitro 3D tissue models seeing increased utility for the rapid, high-throughput screening of drug candidates, it stands to reason that the field of otology could greatly benefit from such innovations. In this study, we propose and describe an in vitro 3D model, designed using a physiologically based approach, which we suggest can be used to estimate drug permeability across human tympanic membranes (TM). We characterize the permeability properties of several template drugs in this model under various growth and storage conditions. The availability of such cost-effective, rapid, high-throughput screening tools should allow for increased innovation and the discovery of novel drug candidates over the currently used animal models. In the context of this TM permeation model, it may promote the development of topical drugs and formulations that can non-invasively traverse the TM and provide tissue-targeted drug delivery as an alternative to systemic treatment, an objective which has seen limited study until present

    An Evaluation of the Drug Permeability Properties of Human Cadaveric In Situ Tympanic and Round Window Membranes

    No full text
    It is estimated that hearing loss currently affects more than 1.5 billion people, or approximately 20% of the global population; however, presently, there are no Food and Drug Administration-approved therapeutics or prophylactics for this condition. While continued research on the development of otoprotective drugs to target this clear unmet need is an obvious path, there are numerous challenges to translating promising therapeutic candidates into human clinical testing. The screening of promising drug candidates relies exclusively on preclinical models. Current models do not permit the rapid high-throughput screening of promising drug candidates, and their relevance to clinical scenarios is often ambiguous. With the current study, we seek to understand the drug permeability properties of the cadaveric tympanic and round window membranes with the goal of generating knowledge that could inform the design and/or evaluation of in vitro organotypic models. The development of such models could enable the early high-throughput screening of topical therapeutic candidates and should address some of the limitations of currently used animal models

    In vitro characterization of novel hyaluronan-antioxidant conjugates as potential topical therapeutics against hearing loss

    Get PDF
    Noise-induced hearing loss affects roughly 430 million people worldwide. Current treatment options often require invasive medical procedures, and to date, there are no FDA-approved drug therapies. While the causes can be diverse, noise induced hearing loss is unequivocally associated with oxidative stress and inflammation, and subsequent damage to the inner ear structures. Several studies have shown that various antioxidants such as glutathione, cysteine, and methionine can be used to mitigate oxidative damage from reactive oxygen species; however, these studies relied on invasive or systemic drug delivery methods. This study focused on the development and characterization of a novel series of antioxidant compounds that would be suitable for non or minimally invasive topical inner ear delivery and could mitigate reactive oxygen species associated cellular damage. Specifically, a series of covalent conjugates were synthesized by using hyaluronan as a drug carrier, and methionine, cysteine or glutathione as antioxidant drugs. The conjugates were tested for their ability to readily permeate though in vitro round window membrane and tympanic membrane permeation models, as well as their in vitro internalization into cochlear cells. Our data revealed interdependence between the molecular weight of the hyaluronan carrier, and the tissue and cellular membrane permeation capacity. Subsequent screening of the adequately sized conjugates in in vitro acellular assays revealed the strongest antioxidant activity for the cysteine and glutathione conjugates. These oxidative stress protective effects were further confirmed in cellular in vitro assays. Collectively, the data herein showcase the potential value of these conjugates as therapeutics against oxidative-stress-mediated cellular damage specific to noise-induced hearing loss

    DataSheet1_Hyaluronic acid-ibuprofen conjugation: a novel ototherapeutic approach protecting inner ear cells from inflammation-mediated damage.PDF

    No full text
    There is a substantial need of effective drugs for the treatment of hearing loss, which affects nearly 500 million individuals globally. Hearing loss can be the result of intense or prolonged noise exposure, ototoxic drugs, infections, and trauma, which trigger inflammatory signaling cascades that lead to irreversible damage to cochlear structures. To address this, we developed and characterized a series of covalent conjugates of anti-inflammatory drugs to hyaluronic acid (HA), for potential use as topical ototherapeutics. These conjugates were tested in in vitro assays designed to mirror physiological processes typically observed with acoustic trauma. Intense noise exposure leads to macrophage recruitment to the cochlea and subsequent inflammatory damage to sensory cells. We therefore first tested our conjugates’ ability to reduce the release of inflammatory cytokines in macrophages. This anti-inflammatory effect on macrophages also translated to increased cochlear cell viability. In our initial screening, one conjugate, ibuprofen-HA, demonstrated significantly higher anti-inflammatory potential than its counterparts. Subsequent cytokine release profiling of ibuprofen-HA further confirmed its ability to reduce a wider range of inflammatory markers, to a greater extent than its equivalent unconjugated drug. The conjugate’s potential as a topical therapeutic was then assessed in previously developed tympanic and round window membrane tissue permeation models. As expected, our data indicate that the conjugate has limited tympanic membrane model permeability; however, it readily permeated the round window membrane model and to a greater extent than the unconjugated drug. Interestingly, our data also revealed that ibuprofen-HA was well tolerated in cellular and tissue cytocompatibility assays, whereas the unconjugated drug displayed significant cytotoxicity at equivalent concentrations. Moreover, our data highlighted the importance of chemical conjugation of ibuprofen to HA; the conjugate had improved anti-inflammatory effects, significantly reduced cytotoxicity, and is more suitable for therapeutic formulation. Overall, this work suggests that ibuprofen-HA could be a promising safe and effective topical ototherapeutic for inflammation-mediated cochlear damage.</p

    PCL-Based Composite Scaffold Matrices for Tissue Engineering Applications

    No full text
    corecore