6,759 research outputs found
A high frequency GaAlAs travelling wave electro-optic modulator at 0.82 micrometers
Experimental GaAlAs modulators operating at 0.82 micrometers using a Mach-Zehnder interferometer configuration were designed and fabricated. Coplanar 50 ohm travelling wave microwave electrodes were used to obtain a bandwidth length product of 11.95 GHz-cm. The design, fabrication and dc performance of the GaAlAs travelling wave modulator is presented
Optical control of an 8-element Ka-band phased array using a high-speed optoelectronic interconnect
Optical distribution of control signals in electronically steered phased array antennas is being considered. A demonstration experiment is described in which a high speed hybrid GaAs optoelectronic integrated circuit (OEIC) was used to control an eight element phased array antenna. The OEIC, which accepts a serial optical control signal as input and converts it to 16 demultiplexed parallel outputs, was used to control the monolithic GaAs phase shifters of a Ka-band patch panel array antenna. Antenna pattern switching speeds of 2.25 microsec, limited by interface circuitry, were observed
Microwave characteristics of GaAs MMIC integratable optical detectors
Interdigitated photoconductive detectors were fabricated on microwave device structures, making them easily integratable with Monolithic Microwave Integrated Circuits (MMIC). Detector responsivity as high as 2.5 A/W and an external quantum efficiency of 3.81 were measured. Response speed was nearly independent of electrode geometry, and all detectors had usable response at frequencies to 6 GHz. A small signal model of the detectors based on microwave measurements was also developed
Capacity strengthening in malaria research: the Gates Malaria Partnership.
The Gates Malaria Partnership (GMP) includes five African and four European partner institutions. Its research programme has five priority areas involving an extensive range of field-based studies. GMP research has contributed significantly to the development of new research consortia investigating strategies for improving means of malaria control, and has already had an impact on policy and practice. A substantial investment in innovative training activities in malaria has enhanced knowledge and practice of malaria control at all levels from policy making to local community involvement. Capacity development, notably through a PhD programme, has been an underlying feature of all aspects of the programme
Measurement techniques for cryogenic Ka-band microstrip antennas
The measurement of cryogenic antennas poses unique logistical problems since the antenna under test must be embedded in a cooling chamber. A method of measuring the performance of cryogenic microstrip antennas using a closed cycle gas cooled refrigerator in a far field range is described. Antenna patterns showing the performance of gold and superconducting Ka-band microstrip antennas at various temperatures are presented
System architecture of MMIC-based large aperture arrays for space application
The persistent trend to use millimeter-wave frequencies for satellite communications presents the challenge to design large-aperture phased arrays for space applications. These arrays, which comprise 100 to 10,000 elements, are now possible due to the advent of lightwave technology and the availability of monolithic microwave integrated circuits. In this paper, system aspects of optically controlled array design are studied. In particular, two architectures for a 40 GHz array are outlined, and the main system-related issues are examined: power budget, synchronization in frequency and phase, and stochastic effects
Analysis of Microstrip Lines with Alternative Implementation of Conductors and Superconductors
An analysis of microstrip line structures in which either the strip or the ground plane or both are made of a high Tc superconductor is presented. The effect of implementation of a superconductor to the strip and the ground plane is explained with the calculation of a conductor loss of the structure by the Phenomenological Loss Equivalence Method (PEM). The theoretical values are compared with the experimental results from a ring resonator which is made of a gold ground plane and a high Tc superconductor, YBa2Cu3O(7-x), strip
Conductor-backed coplanar waveguide resonators of Y-Ba-Cu-O and Tl-Ba-Ca-Cu-O on LaAlO3
Conductor-backed coplanar waveguide (CBCPW) resonators operating at 10.8 GHz have been fabricated from Tl-Ba-Ca-O (TBCCO) and Y-Ba-Cu-O (YBCO) thin films on LaAlO3. The resonators consist of a coplanar waveguide (CPW) patterned on the superconducting film side of the LaAlO3 substrate with a gold ground plane coated on the opposite side. These resonators were tested in the temperature range from 14 to 106 K. At 77 K, the best of our TBCCO and YBCO resonators have an unloaded quality factor (Qo) 7 and 4 times, respectively, larger than that of a similar all-gold resonator. In this study, the Qo's of the TBCCO resonators were larger than those of their YBCO counterparts throughout the aforementioned temperature range
Performance of a Y-Ba-Cu-O superconducting filter/GaAs low noise amplifier hybrid circuit
A superconducting 7.3 GHz two-pole microstrip bandpass filter and a GaAs low noise amplifier (LNA) were combined into an active circuit and characterized at liquid nitrogen temperatures. This superconducting/semiconducting circuit's performance was compared to a gold filter/GaAs LNA hybrid circuit. The superconducting filter/GaAs LNA hybrid circuit showed higher gain and lower noise figure than its gold counterpart
High temperature superconducting thin film microwave circuits: Fabrication, characterization, and applications
Epitaxial YBa2Cu3O7 films were grown on several microwave substrates. Surface resistance and penetration depth measurements were performed to determine the quality of these films. Here the properties of these films on key microwave substrates are described. The fabrication and characterization of a microwave ring resonator circuit to determine transmission line losses are presented. Lower losses than those observed in gold resonator circuits were observed at temperatures lower than critical transition temperature. Based on these results, potential applications of microwave superconducting circuits such as filters, resonators, oscillators, phase shifters, and antenna elements in space communication systems are identified
- …