5 research outputs found

    Development of early maturing salt-tolerant rice variety KKL(R) 3 using a combination of conventional and molecular breeding approaches

    Get PDF
    Introduction: Soil salinity poses a severe threat to rice production, resulting in stunted growth, leaf damage, and substantial yield losses. This study focuses on developing an early maturing seedling stage salinity tolerant rice variety by integrating conventional breeding methods with marker assisted breeding (MAB) approaches.Methods: Seedling-stage salinity tolerance Quantitative Trait Locus (QTL) “Saltol” from the salt-tolerant parent FL478 was introduced into the high-yielding but salt-sensitive rice variety ADT 45. This was achieved through a combination of conventional breeding and MAB. The breeding process involved rigorous selection, screening, and physiological parameter assessments.Results: KKL(R) 3 (KR 15066) identified as the top performing Recombinant Inbred Line (RIL), consistently demonstrating maximum mean grain yields under both salinity (3435.6 kg/ha) and normal (6421.8 kg/ha) conditions. In comparison to the early maturing, salt-tolerant national check variety CSR 10, KKL(R) 3 exhibited a substantial yield increase over 50%.Discussion: The notable improvement observed in KKL(R) 3 positions it as a promising variety for release, offering a reliable solution to maximize yields, ensure food security, and promote agricultural sustainability in both saline and non-saline environments. The study highlights the effectiveness of MAB in developing salt-tolerant rice varieties and emphasizes the significance of the Saltol QTL in enhancing seedling stage salinity tolerance. The potential release of KKL(R) 3 has the capacity to revolutionize rice production in salt affected regions, providing farmers with a reliable solution to maximize yields and contribute to food security while ensuring agricultural sustainability

    Nutritional Composition and In Vitro Starch Digestibility of Crackers Supplemented with Faba Bean Whole Flour, Starch Concentrate, Protein Concentrate and Protein Isolate

    No full text
    The nutritional quality of common wheat-based foods can be improved by adding flours from whole pulses or their carbohydrate and protein constituents. Faba bean (Vicia faba L.) is a pulse with high protein concentration. In this study, prepared faba bean (FB) flours were added to wheat based baked crackers. Wheat cracker recipes were modified by substituting forty percent wheat flour with flours from whole faba bean, starch enriched flour (starch 60%), protein concentrate (protein 60%) or protein isolate (protein 90%). Baked crackers were ground into meal and analyzed for their macronutrient composition, starch characteristics and in vitro starch hydrolysis. Faba bean supplemented crackers had lower (p ≤ 0.001) total starch concentrations, but proportionally higher protein (16.8–43%), dietary fiber (6.7–12.1%), fat (4.8–7.1%) and resistant starch (3.2–6%) (p ≤ 0.001) than wheat crackers (protein: 16.2%, dietary fiber: 6.3%, fat: 4.2, resistant starch: 1.2%). The increased amylose, amylopectin B1- chain and fat concentration from faba bean flour and starch flour supplementation in cracker recipe contributed to increased resistant starch. Flours from whole faba bean, starch or protein fractions improved the nutritional properties and functional value of the wheat-based crackers. The analytical analysis describing protein, starch composition and structure and in vitro enzymatic hydrolysis advance understanding of factors that account for the in vivo benefits of faba bean flours added to crackers in human physiological functions as also previously shown for pasta. The findings can be used to guide development of improve nutritional quality of similar wheat-based food products

    Table2_Development of early maturing salt-tolerant rice variety KKL(R) 3 using a combination of conventional and molecular breeding approaches.DOCX

    No full text
    Introduction: Soil salinity poses a severe threat to rice production, resulting in stunted growth, leaf damage, and substantial yield losses. This study focuses on developing an early maturing seedling stage salinity tolerant rice variety by integrating conventional breeding methods with marker assisted breeding (MAB) approaches.Methods: Seedling-stage salinity tolerance Quantitative Trait Locus (QTL) “Saltol” from the salt-tolerant parent FL478 was introduced into the high-yielding but salt-sensitive rice variety ADT 45. This was achieved through a combination of conventional breeding and MAB. The breeding process involved rigorous selection, screening, and physiological parameter assessments.Results: KKL(R) 3 (KR 15066) identified as the top performing Recombinant Inbred Line (RIL), consistently demonstrating maximum mean grain yields under both salinity (3435.6 kg/ha) and normal (6421.8 kg/ha) conditions. In comparison to the early maturing, salt-tolerant national check variety CSR 10, KKL(R) 3 exhibited a substantial yield increase over 50%.Discussion: The notable improvement observed in KKL(R) 3 positions it as a promising variety for release, offering a reliable solution to maximize yields, ensure food security, and promote agricultural sustainability in both saline and non-saline environments. The study highlights the effectiveness of MAB in developing salt-tolerant rice varieties and emphasizes the significance of the Saltol QTL in enhancing seedling stage salinity tolerance. The potential release of KKL(R) 3 has the capacity to revolutionize rice production in salt affected regions, providing farmers with a reliable solution to maximize yields and contribute to food security while ensuring agricultural sustainability.</p

    Table1_Development of early maturing salt-tolerant rice variety KKL(R) 3 using a combination of conventional and molecular breeding approaches.DOCX

    No full text
    Introduction: Soil salinity poses a severe threat to rice production, resulting in stunted growth, leaf damage, and substantial yield losses. This study focuses on developing an early maturing seedling stage salinity tolerant rice variety by integrating conventional breeding methods with marker assisted breeding (MAB) approaches.Methods: Seedling-stage salinity tolerance Quantitative Trait Locus (QTL) “Saltol” from the salt-tolerant parent FL478 was introduced into the high-yielding but salt-sensitive rice variety ADT 45. This was achieved through a combination of conventional breeding and MAB. The breeding process involved rigorous selection, screening, and physiological parameter assessments.Results: KKL(R) 3 (KR 15066) identified as the top performing Recombinant Inbred Line (RIL), consistently demonstrating maximum mean grain yields under both salinity (3435.6 kg/ha) and normal (6421.8 kg/ha) conditions. In comparison to the early maturing, salt-tolerant national check variety CSR 10, KKL(R) 3 exhibited a substantial yield increase over 50%.Discussion: The notable improvement observed in KKL(R) 3 positions it as a promising variety for release, offering a reliable solution to maximize yields, ensure food security, and promote agricultural sustainability in both saline and non-saline environments. The study highlights the effectiveness of MAB in developing salt-tolerant rice varieties and emphasizes the significance of the Saltol QTL in enhancing seedling stage salinity tolerance. The potential release of KKL(R) 3 has the capacity to revolutionize rice production in salt affected regions, providing farmers with a reliable solution to maximize yields and contribute to food security while ensuring agricultural sustainability.</p
    corecore