3,218 research outputs found
HI Fluctuations at Large Redshifts: II - the Signal Expected for GMRT
For the GMRT, we calculate the expected signal from redshifted HI emission at
two frequency bands centered at 610 and 325 MHz. The study focuses on the
visibility-visibility cross-correlations, proposed earlier as the optimal
statistical estimator for detecting and analyzing this signal. These
correlations directly probe the power spectrum of density fluctuations at the
redshift where the radiation originated, and thereby provide a method for
studying the large scale structures at large redshifts. We present detailed
estimates of the correlations expected between the visibilities measured at
different baselines and frequencies. Analytic fitting formulas representing the
salient features of the expected signal are also provided. These will be useful
in planning observations and deciding an optimal strategy for detecting this
signal.Comment: 16 pages including 7 figures, published in JAp
The CMBR ISW and HI 21-cm Cross-correlation Angular Power Spectrum
The late-time growth of large scale structures (LSS) is imprinted in the CMBR
anisotropy through the Integrated Sachs Wolfe (ISW) effect. This is perceived
to be a very important observational probe of dark energy. Future observations
of redshifted 21-cm radiation from the cosmological neutral hydrogen (HI)
distribution hold the potential of probing the LSS over a large redshift range.
We have investigated the possibility of detecting the ISW through
cross-correlations between the CMBR anisotropies and redshifted 21-cm
observations. Assuming that the HI traces the dark matter, we find that the
ISW-HI cross-correlation angular power spectrum at an angular multipole l is
proportional to the dark matter power spectrum evaluated at the comoving wave
number l/r, where r is the comoving distance to the redshift from which the HI
signal originated. The amplitude of the cross-correlation signal depends on
parameters related to the HI distribution and the growth of cosmological
perturbations. However the cross-correlation is extremely weak as compared to
the CMBR anisotropies and the predicted HI signal. As a consequence the
cross-correlation signal is smaller than the cosmic variance, and a
statistically significant detection is not very likely.Comment: 13 pages, 4 eps figures, submitte
Free-energy functional for freezing transitions: Hard sphere systems freezing into crystalline and amorphous structures
A free-energy functional that contains both the symmetry conserved and
symmetry broken parts of the direct pair correlation function has been used to
investigate the freezing of a system of hard spheres into crystalline and
amorphous structures. The freezing parameters for fluid-crystal transition have
been found to be in very good agreement with the results found from
simulations. We considered amorphous structures found from the molecular
dynamics simulations at packing fractions lower than the glass close
packing fraction and investigated their stability compared to that
of a homogeneous fluid. The existence of free-energy minimum corresponding to a
density distribution of overlapping Gaussians centered around an amorphous
lattice depicts the deeply supercooled state with a heterogeneous density
profile
System reliability calculation of jacket platforms including fatigue and extreme wave loading
Jacket platforms are redundant structures. Therefore, reliability analysis at system level is more applicable than at component level. Conventionally, system reliability analysis is estimated based on either fatigue loading or extreme environmental loading. The purpose of this study is to perform the structural reliability analysis of a jacket platform under both fatigue and extreme loading. In this study the fatigue limit state is defined based on the crack size, which is obtained by a fracture mechanics approach. The probability of failure for each component is calculated by using Monte-Carlo simulation. Important failure paths are identified by using a searching process. The system failure criterion is evaluated by comparing the platform strength and loading distributions in terms of base shear. In order to define a probabilistic formula for load, a global response surface method is adopted to relate the wave height to the response of the structure. A pushover analysis is also carried out to determine the capacity of the platform. Having calculated the structure strength and loading distributions, the annual probability of failure under extreme wave is calculated and compared to the tolerable probability of failure or target reliability. An application of the approach is presented
Agronomic performance of chickpea affected by drought stress at different growth stages
Susceptibility to drought stress has restrained chickpea productivity at a global level, and the development of drought-tolerant varieties is essential to maintain its productivity. Therefore, the present study was conducted to evaluate genetic divergence in selected genotypes of chickpea and their morpho-physiological responses under irrigated and stressed conditions to identify the traits that account for the better performance of these genotypes under stressed conditions, as well as genotypes with improved drought tolerance. The genotypes were evaluated for two years under irrigated and drought stressed conditions, and significant variation was found amongst the genotypes for different morpho-physiological and yield traits. The maximum reduction was observed for plant yield (33.23%) under stressed conditions. Principle component analysis (PCA)-based biplots and correlation studies established its strong positive correlation with relative water content (RWC), membrane stability index (MSI), chlorophyll index (CI), secondary branches (SB) and yield traits and negative correlations with drought susceptibility index (DSI), days to maturity (DM) and 100 seed weight (100 SW) under drought stress, suggesting their use in selecting drought-tolerant germplasm. Ten genotypes with high values of RWC, MSI, CI, SB, yield traits and lower DSI were identified as drought-tolerant and might serve as ideal donors in the forthcoming breeding of elite chickpea cultivars. The seed-filling stage began earlier in these genotypes, with significantly reduced days to maturity under stressed conditions. Our results indicate selection for earliness offers a promising strategy for the development of drought-tolerant chickpea cultivars
HI Fluctuations at Large Redshifts: I--Visibility correlation
We investigate the possibility of probing the large scale structure in the
universe at large redshifts by studying fluctuations in the redshifted 1420 MHz
emission from the neutral hydrogen (HI) at early epochs. The neutral hydrogen
content of the universe is known from absorption studies for z<4.5. The HI
distribution is expected to be inhomogeneous in the gravitational instability
picture and this inhomogeneity leads to anisotropy in the redshifted HI
emission. The best hope of detecting this anisotropy is by using a large
low-frequency interferometric instrument like the Giant Meter-Wave Radio
Telescope (GMRT). We calculate the visibility correlation function <V_nu(u)
V_nu'(u)> at two frequencies nu and nu' of the redshifted HI emission for an
interferometric observation. In particular we give numerical results for the
two GMRT channels centered around nu =325 and 610 MHz from density
inhomogeneity and peculiar velocity of the HI distribution. The visibility
correlation is ~10^-9 to 10^-10 Jy^2. We calculate the signal-to-noise for
detecting the correlation signal in the presence of system noise and show that
the GMRT might detect the signal for integration times ~ 100 hrs. We argue that
the measurement of visibility correlation allows optimal use of the
uncorrelated nature of the system noise across baselines and frequency
channels.Comment: 17 pages, 2 figures, Submitted to JA
Estimating Wind Stress at the Ocean Surface From Scatterometer Observations
Abstract—Wind stress is the most important ocean forcing for driving tropical surface currents. Stress can be estimated from scatterometer-reported wind measurements at 10 m that have been extrapolated to the surface, assuming a neutrally stable atmosphere and no surface current. Scatterometer calibration is designed to account for the assumption of neutral stability; however, the assumption of a particular sea state and negligible current often introduces an error in wind stress estimations. Since the fundamental scatterometer measurement is of the surface radar backscatter (sigma-0) which is related to surface roughness and, thus, stress, we develop a method to estimate wind stress directly from the scatterometer measurements of sigma-0 and their associated azimuth angle and incidence angle using a neural network approach. We compare the results with in situ estimations and observe that the wind stress estimations from this approach are more accurate compared with those obtained from the conventional estimations using 10-m-height wind measurements. Index Terms—Atmospheric stability, neutral stability, scatterometer, wind stress. I
Integrated waveguides and deterministically positioned nitrogen vacancy centers in diamond created by femtosecond laser writing
Diamond's nitrogen vacancy (NV) center is an optically active defect with
long spin coherence times, showing great potential for both efficient nanoscale
magnetometry and quantum information processing schemes. Recently, both the
formation of buried 3D optical waveguides and high quality single NVs in
diamond were demonstrated using the versatile femtosecond laser-writing
technique. However, until now, combining these technologies has been an
outstanding challenge. In this work, we fabricate laser written photonic
waveguides in quantum grade diamond which are aligned to within micron
resolution to single laser-written NVs, enabling an integrated platform
providing deterministically positioned waveguide-coupled NVs. This fabrication
technology opens the way towards on-chip optical routing of single photons
between NVs and optically integrated spin-based sensing
Local intra-uterine Ang-(1-7) infusion attenuates PGE2 and 6-keto PGF1α in decidualized uterus of pseudopregnant rats
Background: Cyclooxygenase (COX)-derived prostanoids (PGE2, PGI2) are important contributors to the process of decidualization. Previous studies showed the presence of Ang-(1-7) in the primary and secondary decidualized zones of the implantation site at early pregnancy. Decreased concentrations of Ang-(1-7) were found in the decidualized uterus compared to the non-decidualized uterus of pseudopregnant rats, suggesting that low levels of Ang-(1-7) are required for successful decidualization at early pregnancy.
Methods: To understand the role of Ang-(1-7) in prostaglandin production in a decidualized uterus, induced by a bolus injection of sesame oil, Ang-(1-7) (24 μg/kg/h) or vehicle was then infused directly into the decidualized uterine horn using an osmotic minipump. The right horns were not injected or infused and served as nondecidualized uterine horns in both groups of animals.
Results: Decidualization increased PGE2 concentration in the uterus (0.53±0.05 vs. 12.0±3.2 pmol/mg protein, p\u3c0.001, non-decidualized vs. decidualized horns); Ang-(1-7) infusion attenuated the increase of PGE2 (12.0± 3.2 vs. 5.1±1.3 pmol/mg protein, p\u3c0.01 control vs. Ang-(1-7) treated decidualized horns). The stable metabolite of PGI2 (6-keto PGF1α) was increased with decidualization (0.79±0.17 vs. 3.5±0.82 pmol/mg protein, p\u3c0.001, non-decidualized vs. decidualized horns). Ang-(1-7) infusion attenuated the increase in 6keto PGF1α in the decidualized horn (3.5±0.82 vs 1.8±0.37 pmol/mg protein, p\u3c0.05 control vs. Ang-(1-7) treated decidualized horns). The circulating levels of 6-keto-PGF1a and TXB2 were decreased by Ang-(1-7) infusion, while no difference was observed in circulating PGE2. Although the global assessment of cleaved caspase 3 immunostaining, a marker of apoptosis, was unchanged within the Ang-(1-7) decidualized horn, there were localized decreases in cleaved caspase 3 staining in the luminal region in the decidualized uterus of Ang-(1-7)-treated rats.
Conclusions: These studies show that increased local uterine Ang-(1-7) alters the uterine prostaglandin environment, possibly leading to disruptions of early events of decidualization
- …