192 research outputs found

    On Exact Supersymmetry in DLCQ

    Get PDF
    In recent years a supersymmetric form of discrete light-cone quantization (hereafter `SDLCQ') has emerged as a very powerful tool for solving supersymmetric field theories. In this scheme, one calculates the light-cone supercharge with respect to a discretized light-cone Fock basis, instead of working with the light-cone Hamiltonian. This procedure has the advantage of preserving supersymmetry even in the discretized theory, and eliminates the need for explicit renormalizations in 1+1 dimensions. In order to compare the usual DLCQ prescription with the supersymmetric prescription, we consider two dimensional SU(N) Yang-Mills theory coupled to a massive adjoint Majorana fermion, which is known to be supersymmetric at a particular value of the fermion mass. After studying how singular-valued amplitudes and intermediate zero momentum modes are regularized in both schemes, we are able to establish a precise connection between conventional DLCQ and its supersymmetric extension, SDLCQ. In particular, we derive the explicit form of the (irrelevant) interaction that renders the DLCQ formulation of the theory exactly supersymmetric for any light-cone compactification. We check our analytical results via a numerical procedure, and discuss the relevance of this interaction when supersymmetry is explicitly broken.Comment: 12 page

    The Perils of `Soft' SUSY Breaking

    Get PDF
    We consider a two dimensional SU(N) gauge theory coupled to an adjoint Majorana fermion, which is known to be supersymmetric for a particular value of fermion mass. We investigate the `soft' supersymmetry breaking of the discrete light cone quantization (DLCQ) of this theory. There are several DLCQ formulations of this theory currently in the literature and they naively appear to behave differently under `soft' supersymmetry breaking at finite resolution. We show that all these formulations nevertheless yield identical bound state masses in the decompactification limit of the light-like circle. Moreover, we are able to show that the supersymmetry-inspired version of DLCQ (so called `SDLCQ') provides the best rate of convergence of DLCQ bound state masses towards the actual continuum values, except possibly near or at the critical fermion mass. In this last case, we discuss improved extrapolation schemes that must supplement the DLCQ algorithm in order to obtain correct continuum bound state masses. Interestingly, when we truncate the Fock space to two particles, the SDLCQ prescription presented here provides a scheme for improving the rate of convergence of the massive t'Hooft model. Thus the supersymmetry-inspired SDLCQ prescription is applicable to theories without supersymmetry.Comment: 11 pages, Latex; 2 figures (EPS); Numerical results extended; conclusions revise

    Exact Solution of the One-Dimensional Non-Abelian Coulomb Gas at Large N

    Get PDF
    The problem of computing the thermodynamic properties of a one-dimensional gas of particles which transform in the adjoint representation of the gauge group and interact through non-Abelian electric fields is formulated and solved in the large NN limit. The explicit solution exhibits a first order confinement-deconfinement phase transition with computable properties and describes two dimensional adjoint QCD in the limit where matter field masses are large.Comment: 8 pages, late

    Adsorption models of hybridization and post-hybridisation behaviour on oligonucleotide microarrays

    Full text link
    Analysis of data from an Affymetrix Latin Square spike-in experiment indicates that measured fluorescence intensities of features on an oligonucleotide microarray are related to spike-in RNA target concentrations via a hyperbolic response function, generally identified as a Langmuir adsorption isotherm. Furthermore the asymptotic signal at high spike-in concentrations is almost invariably lower for a mismatch feature than for its partner perfect match feature. We survey a number of theoretical adsorption models of hybridization at the microarray surface and find that in general they are unable to explain the differing saturation responses of perfect and mismatch features. On the other hand, we find that a simple and consistent explanation can be found in a model in which equilibrium hybridization followed by partial dissociation of duplexes during the post-hybridization washing phase.Comment: 26 pages, 6 figures, some rearrangement of sections and some additions. To appear in J.Phys.(condensed matter

    Scaling Study of Pure Gauge Lattice QCD by Monte Carlo Renormalization Group Method

    Full text link
    The scaling behavior of pure gauge SU(3) in the region β=5.857.60\beta=5.85 - 7.60 is examined by a Monte Carlo Renormalization Group analysis. The coupling shifts induced by factor 2 blocking are measured both on 324^4 and 164^4 lattices with high statistics. A systematic deviation from naive 2-loop scaling is clearly seen. The mean field and effective coupling constant schemes explain part, but not all of the deviation. It can be accounted for by a suitable change of coupling constant, including a correction term O(g7){\cal O}(g^7) in the 2-loop lattice β\beta-function. Based on this improvement, σ/ΛMSnf=0\sqrt{\sigma}/\Lambda_{\overline {MS}}^{n_f=0} is estimated to be 2.2(±0.1)2.2(\pm 0.1) from the analysis of the string tension σ\sigma.Comment: 4 pages of A4 format including 7-postscript figure

    On the Spectrum of QCD(1+1) with SU(N_c) Currents

    Get PDF
    Extending previous work, we calculate in this note the fermionic spectrum of two-dimensional QCD (QCD_2) in the formulation with SU(N_c) currents. Together with the results in the bosonic sector this allows to address the as yet unresolved task of finding the single-particle states of this theory as a function of the ratio of the numbers of flavors and colors, \lambda=N_f/N_c, anew. We construct the Hamiltonian matrix in DLCQ formulation as an algebraic function of the harmonic resolution K and the continuous parameter \lambda. Amongst the more surprising findings in the fermionic sector chiefly considered here is that the fermion momentum is a function of \lambda. This dependence is necessary in order to reproduce the well-known 't Hooft and large N_f spectra. Remarkably, those spectra have the same single-particle content as the ones in the bosonic sectors. The twist here is the dramatically different sizes of the Fock bases in the two sectors, which makes it possible to interpret in principle all states of the discrete approach. The hope is that some of this insight carries over into the continuum. We also present some new findings concerning the single-particle spectrum of the adjoint theory.Comment: 21 pp., 13 figures, version published in PR

    Surface induced disorder in body-centered cubic alloys

    Full text link
    We present Monte Carlo simulations of surface induced disordering in a model of a binary alloy on a bcc lattice which undergoes a first order bulk transition from the ordered DO3 phase to the disordered A2 phase. The data are analyzed in terms of an effective interface Hamiltonian for a system with several order parameters in the framework of the linear renormalization approach due to Brezin, Halperin and Leibler. We show that the model provides a good description of the system in the vicinity of the interface. In particular, we recover the logarithmic divergence of the thickness of the disordered layer as the bulk transition is approached, we calculate the critical behavior of the maxima of the layer susceptibilities, and demonstrate that it is in reasonable agreement with the simulation data. Directly at the (110) surface, the theory predicts that all order parameters vanish continuously at the surface with a nonuniversal, but common critical exponent. However, we find different exponents for the order parameter of the DO3 phase and the order parameter of the B2 phase. Using the effective interface model, we derive the finite size scaling function for the surface order parameter and show that the theory accounts well for the finite size behavior of the DO3 ordering but not for that of B2 ordering. The situation is even more complicated in the neighborhood of the (100) surface, due to the presence of an ordering field which couples to the B2 order.Comment: To appear in Physical Review

    Physics of Quark--Gluon Plasma

    Get PDF
    In this lecture, we give a brief review of what theorists now know, understand, or guess about static and kinetic properties of quark--gluon plasma. A particular attention is payed to the problem of physical observability, i.e. the physical meaningfulness of various characteristics of QGPQGP discussed in the literature.Comment: 35 pages LaTeX, 3 Postscript figures included by epsf.sty are now fixed and printable, uses axodraw.sty included in the package. Some references added and minor stylistic changes made. Lecture at the XXIV ITEP Winter School (Snegiri, February 1996

    Asymptotic Energy Dependence of Hadronic Total Cross Sections from Lattice QCD

    Full text link
    The nonperturbative approach to soft high-energy hadron-hadron scattering, based on the analytic continuation of Wilson-loop correlation functions from Euclidean to Minkowskian theory, allows to investigate the asymptotic energy dependence of hadron-hadron total cross sections in lattice QCD. In this paper we will show, using best fits of the lattice data with proper functional forms satisfying unitarity and other physical constraints, how indications emerge in favor of a universal asymptotic high-energy behavior of the kind B log^2 s for hadronic total cross sections.Comment: Revised and extended version; 29 pages, 4 figure

    Colour-Dielectric Gauge Theory on a Transverse Lattice

    Get PDF
    We investigate in some detail consequences of the effective colour-dielectric formulation of lattice gauge theory using the light-cone Hamiltonian formalism with a transverse lattice. As a quantitative test of this approach, we have performed extensive analytic and numerical calculations for 2+1-dimensional pure gauge theory in the large N limit. Because of Eguchi-Kawai reduction, one effectively studies a 1+1-dimensional gauge theory coupled to matter in the adjoint representation. We study the structure of coupling constant space for our effective potential by comparing with the physical results available from conventional Euclidean lattice Monte Carlo simulations of this system. In particular, we calculate and measure the scaling behaviour of the entire low-lying glueball spectrum, glueball wavefunctions, string tension, asymptotic density of states, and deconfining temperature. We employ a new hybrid DLCQ/wavefunction basis in our calculations of the light-cone Hamiltonian matrix elements, along with extrapolation in Tamm-Dancoff truncation, significantly reducing numerical errors. Finally we discuss, in light of our results, what further measurements and calculations could be made in order to systematically remove lattice spacing dependence from our effective potential a priori.Comment: 48 pages, Latex, uses macro boxedeps.tex, minor errors corrected in revised versio
    corecore