27 research outputs found

    Beyond prejudice: Are negative evaluations the problem and is getting us to like one another more the solution?

    Get PDF
    publication-status: Acceptedtypes: ArticleThis is a post print version of an article published in Behavioral and Brain Sciences, 2012, 35 (6), pp 438-439 DOI: http://dx.doi.org/10.1017/S0140525X12001252 Copyright © Cambridge University Press 2012For most of the history of prejudice research, negativity has been treated as its emotional and cognitive signature, a conception that continues to dominate work on the topic. By this definition, prejudice occurs when we dislike or derogate members of other groups. Recent research, however, has highlighted the need for a more nuanced and ‘inclusive’ (Eagly 2004) perspective on the role of intergroup emotions and beliefs in sustaining discrimination. On the one hand, several independent lines of research have shown that unequal intergroup relations are often marked by attitudinal complexity, with positive responses such as affection and admiration mingling with negative responses such as contempt and resentment. Simple antipathy is the exception rather than the rule. On the other hand, there is mounting evidence that nurturing bonds of affection between the advantaged and the disadvantaged sometimes entrenches rather than disrupts wider patterns of discrimination. Notably, prejudice reduction interventions may have ironic effects on the political attitudes of the historically disadvantaged, decreasing their perceptions of injustice and willingness to engage in collective action to transform social inequalities. These developments raise a number of important questions. Has the time come to challenge the assumption that negative evaluations are inevitably the cognitive and affective hallmarks of discrimination? Is the orthodox concept of prejudice in danger of side-tracking, if not obstructing, progress towards social justice in a fuller sense? What are the prospects for reconciling a prejudice reduction model of change, designed to get people to like one another more, with a collective action model of change, designed to ignite struggles to achieve intergroup equality

    Energy and force analysis of Ti-6Al-4V linear friction welds for computational modeling input and validation data

    Get PDF
    The linear friction welding (LFW) process is finding increasing use as a manufacturing technology for the production of titanium alloy Ti-6Al-4V aerospace components. Computational models give an insight into the process, however, there is limited experimental data that can be used for either modeling inputs or validation. To address this problem, a design of experiments approach was used to investigate the influence of the LFW process inputs on various outputs for experimental Ti-6Al-4V welds. The finite element analysis software DEFORM was also used in conjunction with the experimental findings to investigate the heating of the workpieces. Key findings showed that the average interface force and coefficient of friction during each phase of the process were insensitive to the rubbing velocity; the coefficient of friction was not coulombic and varied between 0.3 and 1.3 depending on the process conditions; and the interface of the workpieces reached a temperature of approximately approximately 1273 K (1000 °C) at the end of phase 1. This work has enabled a greater insight into the underlying process physics and will aid future modeling investigations.EPSRC, Boeing Company, Welding Institut

    Linear friction welding of aluminium to magnesium

    No full text
    Joining of an aluminium alloy to a magnesium alloy (AA 6082-T6 to AZ31) has been carried out by linear friction welding. The joining of this material combination is of particular significance for automotive components. Results show that welds with reasonable strength (comparable to the yield strength of the parent materials in O temper) can be produced. Weld microstructures were characterised by backscattered scanning electron microscopy, hardness testing and laboratory based X-ray diffraction. A particular emphasis was placed on determining the effects of welding parameters on the relative amounts of detrimental intermetallic phase at the weld line

    Evaluation of the interfacial shear strength and residual stress of TiAlN coating on ZIRLOℱ fuel cladding using a modified shear-lag model approach

    Get PDF
    AbstractThis paper investigates the residual stresses and interfacial shear strength of a TiAlN coating on Zr–Nb–Sn–Fe alloy (ZIRLOℱ) substrate designed to improve corrosion resistance of fuel cladding used in water-cooled nuclear reactors, both during normal and exceptional conditions, e.g. a loss of coolant event (LOCA). The distribution and maximum value of the interfacial shear strength has been estimated using a modified shear-lag model. The parameters critical to this analysis were determined experimentally. From these input parameters the interfacial shear strength between the TiAlN coating and ZIRLOℱ substrate was inferred to be around 120 MPa. It is worth noting that the apparent strength of the coating is high (∌3.4 GPa). However, this is predominantly due to the large compressive residuals stress (3 GPa in compression), which must be overcome for the coating to fail in tension, which happens at a load just 150 MPa in excess of this
    corecore