38 research outputs found

    Sol–gel-derived glass-ceramic photorefractive films for photonic structures

    Get PDF
    Glass photonics are widespread, from everyday objects around us to high-tech specialized devices. Among different technologies, sol–gel synthesis allows for nanoscale materials engineering by exploiting its unique structures, such as transparent glass-ceramics, to tailor optical and electromagnetic properties and to boost photon-management yield. Here, we briefly discuss the state of the technology and show that the choice of the sol–gel as a synthesis method brings the advantage of process versatility regarding materials composition and ease of implementation. In this context, we present tin-dioxide–silica (SnO2–SiO2) glass-ceramic waveguides activated by europium ions (Eu3+). The focus is on the photorefractive properties of this system because its photoluminescence properties have already been discussed in the papers presented in the bibliography. The main findings include the high photosensitivity of sol–gel 25SnO2:75SiO2 glass-ceramic waveguides; the ultraviolet (UV)-induced refractive index change (∆n ~ −1.6 × 10−3), the easy fabrication process, and the low propagation losses (0.5 ± 0.2 dB/cm), that make this glass-ceramic an interesting photonic material for smart optical applications

    Nonlinear optical properties and surface-plasmon enhanced optical limiting in Ag-Cu nanoclusters co-doped in SiO(2) sol-gel films

    No full text
    The nonlinear optical properties and the role of the surface-plasmon resonance (SPR) on optical limiting (OL) properties of Ag-Cu nanoclusters co-doped in SiO(2) matrix prepared using the sol-gel technique with a Cu/Ag molar ratio of 1, 2 and 3, respectively, are presented. The studies were made using the second harmonic of high-power nanosecond and picosecond Nd:YAG lasers. These films show a self-defocusing nonlinearity with both nanosecond and picosecond pulses and a good nonlinear absorption behavior with the nanosecond pulse excitation. The nonlinear refractive index decreased with decreasing particle size, whereas the nonlinear absorption increased with an increase in Cu concentration. The observed nonlinear absorption is explained by taking into account the cumulative effect of both the intraband and interband mechanisms. The excitation near the SPR of Cu resulted in an enhanced OL behavior with increasing Cu concentration. No such concentration dependence is observed when the excitation is near the SPR of Ag, however, the limiting threshold is reduced approximately 10-17 times. Excitation at wavelengths far below the SPR of Ag and Cu has not shown any OL behavior. The major contribution toward OL is observed to be from the interband absorption and from a possible energy transfer within the higher unoccupied states of Cu and Ag. Although nonlinear scattering is observed at higher intensities, its contribution is found to be much less than that of the nonlinear absorption assisted by an energy transfer. (C) 2004 American Institute of Physics
    corecore