34 research outputs found

    Brans-Dicke theory: Jordan vs Einstein Frame

    Get PDF
    It is well known that, in contrast to general relativity, there are two conformally related frames, the Jordan frame and the Einstein frame, in which the Brans-Dicke theory, a prototype of generic scalar-tensor theory, can be formulated. There is a long standing debate on the physical equivalence of the formulations in these two different frames. It is shown here that gravitational deflection of light to second order accuracy may observationally distinguish the two versions of the Brans-Dicke theory.Comment: 10 pages, Accepted by Mod. Phys. Letts.

    Testing gravity at the Second post-Newtonian level through gravitational deflection of massive particles

    Get PDF
    Expression for second post-Newtonian level gravitational deflection angle of massive particles is obtained in a model independent framework. Several of its important implications including the possibility of testing gravitational theories at that level are discussed.Comment: 5 pages, couple of equations of the previous version are correcte

    Analogue Of The Fizeau Effect In An Effective Optical Medium

    Get PDF
    Using a new approach, we propose an analogue of the Fizeau effect for massive and massless particles in an effective optical medium derived from the static, spherically symmetric gravitational field. The medium is naturally perceived as a dispersive medium by matter de Broglie waves. Several Fresnel drag coefficients are worked out, with appropriate interpretations of the wavelengths used. In two cases, it turns out that the coefficients become independent of the wavelength even if the equivalent medium itself is dispersive. A few conceptual issues are also addressed in the process of derivation. It is shown that some of our results complement recent work dealing with real fluid or optical black holes

    Tidal Forces in Cold Black Hole Spacetimes

    Get PDF
    We investigate here the behavior of a few spherically symmetric static acclaimed black hole solutions in respect of tidal forces in the geodesic frame. It turns out that the forces diverge on the horizon of cold black holes (CBH) while for ordinary ones, they do not. It is pointed out that Kruskal-like extensions do not render the CBH metrics nonsingular. We present a CBH that is available in the Brans-Dicke theory for which the tidal forces do not diverge on the horizon and in that sense it is a better one.Comment: 12 pages, no figures. PDF (from original MSWord). Submitted to International Journal of Modern Physics D, 10 Aug 0

    Stability of Circular Orbits in General Relativity: A Phase Space Analysis

    Full text link
    Phase space method provides a novel way for deducing qualitative features of nonlinear differential equations without actually solving them. The method is applied here for analyzing stability of circular orbits of test particles in various physically interesting environments. The approach is shown to work in a revealing way in Schwarzschild spacetime. All relevant conclusions about circular orbits in the Schwarzschild-de Sitter spacetime are shown to be remarkably encoded in a single parameter. The analysis in the rotating Kerr black hole readily exposes information as to how stability depends on the ratio of source rotation to particle angular momentum. As a wider application, it is exemplified how the analysis reveals useful information when applied to motion in a refractive medium, for instance, that of optical black holes.Comment: 20 pages. Accepted for publication in Int. J. theor. Phy

    Strong field gravitational lensing in scalar tensor theories

    Full text link
    Strong field gravitational lensing in the Brans-Dicke theory has been studied. The deflection angle for photons passing very close to the photon sphere is estimated for the static spherically symmetric space-time of the theory and the position and magnification of the relativistic images are obtained. Modeling the super massive central object of the galaxy by the Brans-Dicke space-time, numerical values of different strong lensing observable are estimated. It is found that against the expectation there is no significant scalar field effect in the strong field observable lensing parameters. This observation raises question on the potentiality of the strong field lensing to discriminate different gravitational theories.Comment: 20 pages, accepted in Class. Quantum Grav., final versio

    On Traversable Lorentzian Wormholes in the Vacuum Low Energy Effective String Theory in Einstein and Jordan Frames

    Full text link
    Three new classes (II-IV) of solutions of the vacuum low energy effective string theory in four dimensions are derived. Wormhole solutions are investigated in those solutions including the class I case both in the Einstein and in the Jordan (string) frame. It turns out that, of the eight classes of solutions investigated (four in the Einstein frame and four in the corresponding string frame), massive Lorentzian traversable wormholes exist in five classes. Nontrivial massless limit exists only in class I Einstein frame solution while none at all exists in the string frame. An investigation of test scalar charge motion in the class I solution in the two frames is carried out by using the Plebanski-Sawicki theorem. A curious consequence is that the motion around the extremal zero (Keplerian) mass configuration leads, as a result of scalar-scalar interaction, to a new hypothetical "mass" that confines test scalar charges in bound orbits, but does not interact with neutral test particles.Comment: 18 page
    corecore