54 research outputs found

    Ionization of Sodium and Rubidium nS, nP and nD Rydberg atoms by blackbody radiation

    Get PDF
    Results of theoretical calculations of ionization rates of Rb and Na Rydberg atoms by blackbody radiation (BBR) are presented. Calculations have been performed for nS, nP and nD states of Na and Rb, which are commonly used in a variety of experiments, at principal quantum numbers n=8-65 and at three ambient temperatures of 77, 300 and 600 K. A peculiarity of our calculations is that we take into account the contributions of BBR-induced redistribution of population between Rydberg states prior to photoionization and field ionization by extraction electric field pulses. The obtained results show that these phenomena affect both the magnitude of measured ionization rates and shapes of their dependencies on n. The calculated ionization rates are compared with the results of our earlier measurements of BBR-induced ionization rates of Na nS and nD Rydberg states with n=8-20 at 300 K. A good agreement for all states except nS with n>15 is observed. We also present the useful analytical formulae for quick estimation of BBR ionization rates of Rydberg atoms.Comment: 14 pages, 6 figures, 6 tables in Appendi

    Collisional and thermal ionization of sodium Rydberg atoms I. Experiment for nS and nD atoms with n=8-20

    Full text link
    Collisional and thermal ionization of sodium nS and nD Rydberg atoms with n=8-20 has been studied. The experiments were performed using a two-step pulsed laser excitation in an effusive atomic beam at atom density of about 2 10^{10} cm^{-3}. Molecular and atomic ions from associative, Penning, and thermal ionization processes were detected. It has been found that the atomic ions were created mainly due to photoionization of Rydberg atoms by photons of blackbody radiation at the ambient temperature of 300K. Blackbody ionization rates and effective lifetimes of Rydberg states of interest were determined. The molecular ions were found to be from associative ionization in Na(nL)+Na(3S) collisions. Rate constants of associative ionization have been measured using an original method based on relative measurements of Na_{2}^{+} and Na^{+} ion signals.Comment: 23 pages, 10 figure

    Обмен мнениями по поводу статьи Мартина Мюллера «Разыскивая глобальный Восток»

    Full text link
    This section presents exchanges between intellectuals from Eastern and Western Europe, Russia, and North America who kindly agreed to read and comment on Martin Mueller’s article “In Search of the Global East”, relying on the situation in their own academic disciplines, work experiences, and the twists and turns of their scientific research and creative challenges. Researchers, academic teachers, exhibition curators, writers, and architects reflect on the power and influence which geographical names exert on academic life, politics, and culture. Starting from Mueller’s article on the Global East, as well as his other text wherein he expresses his skepticism of the concept of post-socialism, the commentators, evaluating Mueller’s arguments critically, raise a number of fundamental questions. Among these questions is the need to historicize scientific concepts, the issue of the regularly-reproducible misunderstanding (or even exclusion) of the East by Western intellectuals, the tasks the inclusion of the Global East in the overall geographical picture will contribute to, as well as the question of whether the concern that the Global East is not sufficiently heard in the world is narrowly academic. This indirect debate between the author of the key text in this thematic issue and his commentators is significant as an episode of the joint search for a more democratic, creative, and inspiring future for the region that unites Eastern Europe, Russia, and Central Asia. © 2020, RUSSIAN SOCIOLOGICAL REVIEW. All rights reserved

    Nonlinear effects in optical pumping of a cold and slow atomic beam

    Get PDF
    By photoionizing hyperfine (HF) levels of the Cs state 6 2P3/2 in a slow and cold atom beam, we find how their population depends on the excitation laser power. The long time (around 180 μs) spent by the slow atoms inside the resonant laser beam is large enough to enable exploration of a unique atom-light interaction regime heavily affected by time-dependent optical pumping. We demonstrate that, under such conditions, the onset of nonlinear effects in the population dynamics and optical pumping occurs at excitation laser intensities much smaller than the conventional respective saturation values. The evolution of population within the HF structure is calculated by numerical integration of the multilevel optical Bloch equations. The agreement between numerical results and experiment outcomes is excellent. All main features in the experimental findings are explained by the occurrence of “dark” and “bright” resonances leading to power-dependent branching coefficients

    Effect of photoions on the line shapes of the F\"orster resonance and microwave transitions in cold rubidium Rydberg atoms

    Full text link
    Experiments on the spectroscopy of the F\"orster resonance Rb(37P)+Rb(37P) -> Rb(37S)+Rb(38S) and microwave transitions nP -> n'S, n'D between Rydberg states of cold Rb atoms in a magneto-optical trap have been performed. Under ordinary conditions, all spectra exhibited a 2-3 MHz line width independently of the interaction time of atoms with each other or with microwave radiation, although the ultimate resonance width should be defined by the inverse interaction time. Analysis of the experimental conditions has shown that the main source of the line broadening was the inhomogeneous electric field of cold photoions appeared at the excitation of initial Rydberg nP states by broadband pulsed laser radiation. Using an additional pulse of the electric field, which rapidly removed the photoions after the laser pulse, lead to a substantial narrowing of the microwave and F\"orster resonances. An analysis of various sources of the line broadening in cold Rydberg atoms has been conducted.Comment: 10 pages, 6 figure

    Ionization of Rydberg atoms by blackbody radiation

    Full text link
    We have studied an ionization of alkali-metal Rydberg atoms by blackbody radiation (BBR). The results of the theoretical calculations of ionization rates of Li, Na, K, Rb and Cs Rydberg atoms are presented. Calculations have been performed for nS, nP and nD states which are commonly used in a variety of experiments, at principal quantum numbers n=8-65 and at the three ambient temperatures of 77, 300 and 600 K. A peculiarity of our calculations is that we take into account the contributions of BBR-induced redistribution of population between Rydberg states prior to photoionization and field ionization by extraction electric field pulses. The obtained results show that these phenomena affect both the magnitude of measured ionization rates and shapes of their dependences on n. A Cooper minimum for BBR-induced transitions between bound Rydberg states of Li has been found. The calculated ionization rates are compared with our earlier measurements of BBR-induced ionization rates of Na nS and nD Rydberg states with n=8-20 at 300 K. A good agreement for all states except nS with n>15 is observed. Useful analytical formulas for quick estimation of BBR ionization rates of Rydberg atoms are presented. Application of BBR-induced ionization signal to measurements of collisional ionization rates is demonstrated.Comment: 36 pages, 16 figures. Paper is revised following NJP referees' comments and suggestion

    The Human Serum Metabolome

    Get PDF
    Continuing improvements in analytical technology along with an increased interest in performing comprehensive, quantitative metabolic profiling, is leading to increased interest pressures within the metabolomics community to develop centralized metabolite reference resources for certain clinically important biofluids, such as cerebrospinal fluid, urine and blood. As part of an ongoing effort to systematically characterize the human metabolome through the Human Metabolome Project, we have undertaken the task of characterizing the human serum metabolome. In doing so, we have combined targeted and non-targeted NMR, GC-MS and LC-MS methods with computer-aided literature mining to identify and quantify a comprehensive, if not absolutely complete, set of metabolites commonly detected and quantified (with today's technology) in the human serum metabolome. Our use of multiple metabolomics platforms and technologies allowed us to substantially enhance the level of metabolome coverage while critically assessing the relative strengths and weaknesses of these platforms or technologies. Tables containing the complete set of 4229 confirmed and highly probable human serum compounds, their concentrations, related literature references and links to their known disease associations are freely available at http://www.serummetabolome.ca
    corecore