23 research outputs found

    Statistical theory of thermal evolution of neutron stars

    Full text link
    Thermal evolution of neutron stars is known to depend on the properties of superdense matter in neutron star cores. We suggest a statistical analysis of isolated cooling middle-aged neutron stars and old transiently accreting quasi-stationary neutron stars warmed up by deep crustal heating in low-mass X-ray binaries. The method is based on simulations of the evolution of stars of different masses and on averaging the results over respective mass distributions. This gives theoretical distributions of isolated neutron stars in the surface temperature--age plane and of accreting stars in the photon thermal luminosity--mean mass accretion rate plane to be compared with observations. This approach permits to explore not only superdense matter but also the mass distributions of isolated and accreting neutron stars. We show that the observations of these stars can be reasonably well explained by assuming the presence of the powerful direct Urca process of neutrino emission in the inner cores of massive stars, introducing a slight broadening of the direct Urca threshold (for instance, by proton superfluidity), and by tuning mass distributions of isolated and accreted neutron stars.Comment: 13 pages, 20 figure

    NS 1987A in SN 1987A

    Full text link
    The possible detection of a compact object in the remnant of SN 1987A presents an unprecedented opportunity to follow its early evolution. The suspected detection stems from an excess of infrared emission from a dust blob near the compact object's predicted position. The infrared excess could be due to the decay of isotopes like 44Ti, accretion luminosity from a neutron star or black hole, magnetospheric emission or a wind originating from the spindown of a pulsar, or thermal emission from an embedded, cooling neutron star (NS 1987A). It is shown that the last possibility is the most plausible as the other explanations are disfavored by other observations and/or require fine-tuning of parameters. Not only are there indications the dust blob overlaps the predicted location of a kicked compact remnant, but its excess luminosity also matches the expected thermal power of a 30 year old neutron star. Furthermore, models of cooling neutron stars within the Minimal Cooling paradigm readily fit both NS 1987A and Cas A, the next-youngest known neutron star. If correct, a long heat transport timescale in the crust and a large effective stellar temperature are favored, implying relatively limited crustal n-1S0 superfluidity and an envelope with a thick layer of light elements, respectively. If the locations don't overlap, then pulsar spindown or accretion might be more likely, but the pulsar's period and magnetic field or the accretion rate must be rather finely tuned. In this case, NS 1987A may have enhanced cooling and/or a heavy-element envelope.Comment: 21 pages, 6 figures, to be published in Ap

    Cooling of the Cassiopeia A neutron star and the effect of diffusive nuclear burning

    Full text link
    The study of how neutron stars cool over time can provide invaluable insights into fundamental physics such as the nuclear equation of state and superconductivity and superfluidity. A critical relation in neutron star cooling is the one between observed surface temperature and interior temperature. This relation is determined by the composition of the neutron star envelope and can be influenced by the process of diffusive nuclear burning (DNB). We calculate models of envelopes that include DNB and find that DNB can lead to a rapidly changing envelope composition which can be relevant for understanding the long-term cooling behavior of neutron stars. We also report on analysis of the latest temperature measurements of the young neutron star in the Cassiopeia A supernova remnant. The 13 Chandra observations over 18 years show that the neutron star's temperature is decreasing at a rate of 2-3 percent per decade, and this rapid cooling can be explained by the presence of a proton superconductor and neutron superfluid in the core of the star.Comment: 7 pages, 7 figures; to appear in the AIP Conference Proceedings of the Xiamen-CUSTIPEN Workshop on the EOS of Dense Neutron-Rich Matter in the Era of Gravitational Wave Astronomy (January 3-7, 2019, Xiamen, China

    Constraining the properties of dense neutron star cores:the case of the low-mass X-ray binary HETE J1900.1-2455

    Get PDF
    Measuring the time evolution of the effective surface temperature of neutron stars can provide invaluable information on the properties of their dense cores. Here, we report on a new Chandra observation of the transient neutron star low-mass X-ray binary HETE J1900.1-2455, which was obtained ~2.5 yr after the end of its ~10-yr long accretion outburst. The source is barely detected during the observation, collecting only six net photons, all below 2 keV. Assuming that the spectrum is shaped as a neutron star atmosphere model we perform a statistical analysis to determine a 1-sigma confidence upper range for the neutron star temperature of ~30-39 eV (for an observer at infinity), depending on its mass, radius and distance. Given the heat injected into the neutron star during the accretion outburst, estimated from data provided by all-sky monitors, the inferred very low temperature suggests that either the core has a very high heat capacity or undergoes very rapid neutrino cooling. While the present data do not allow us to disentangle these two possibilities, both suggest that a significant fraction of the dense core is not superfluid/superconductor. Our modeling of the thermal evolution of the neutron star predicts that it may still cool further, down to a temperature of ~15 eV. Measuring such a low temperature with a future observation may provide constraints on the fraction of baryons that is paired in the stellar core.Comment: 14 pages (12 main, 2 appendix), 10 figures, published in MNRA
    corecore