116 research outputs found
Identification of CD4−CD8− Double-Negative Natural Killer T Cell Precursors in the Thymus
BACKGROUND: It is well known that CD1d-restricted Valpha14 invariant natural killer T (NKT) cells are derived from cells in the CD4(+)CD8(+) double-positive (DP) population in the thymus. However, the developmental progression of NKT cells in the earlier stages remains unclear, and the possible existence of NKT cell presursors in the earlier stages than DP stage remains to be tested. PRINCIPAL FINDINGS: Here, we demonstrate that NKT cell precursors that express invariant Valpha14-Jalpha18 transcripts but devoid of surface expression of the invariant Valpha14 receptor are present in the late CD4(-)CD8(-) double-negative (DN)4 stage and have the potential to generate mature NKT cells in both in vivo and in vitro experimental conditions. Moreover, the DN4 population in CD1d knock-out (CD1dKO) mice was similar to those with an NKT cell potential in wild-type (WT) C57BL/6 (B6) mice, but failed to develop into NKT cells in vitro. However, these precursors could develop into NKT cells when co-cultured with normal thymocytes or in an in vivo experimental setting, indicating that functional NKT cell precursors are present in CD1dKO mice. CONCLUSIONS: Together, these results demonstrate that thymic DN4 fraction contains NKT cell precursors. Our findings provide new insights into the early development of NKT cells prior to surface expression of the invariant Valpha14 antigen receptor and suggest the possible alternative developmental pathway of NKT cells
Spleen-Resident CD4+ and CD4− CD8α− Dendritic Cell Subsets Differ in Their Ability to Prime Invariant Natural Killer T Lymphocytes
One important function of conventional dendritic cells (cDC) is their high capacity to capture, process and present Ag to T lymphocytes. Mouse splenic cDC subtypes, including CD8α+ and CD8α− cDC, are not identical in their Ag presenting and T cell priming functions. Surprisingly, few studies have reported functional differences between CD4− and CD4+ CD8α− cDC subsets. We show that, when loaded in vitro with OVA peptide or whole protein, and in steady-state conditions, splenic CD4− and CD4+ cDC are equivalent in their capacity to prime and direct CD4+ and CD8+ T cell differentiation. In contrast, in response to α-galactosylceramide (α-GalCer), CD4− and CD4+ cDC differentially activate invariant Natural Killer T (iNKT) cells, a population of lipid-reactive non-conventional T lymphocytes. Both cDC subsets equally take up α-GalCer in vitro and in vivo to stimulate the iNKT hybridoma DN32.D3, the activation of which depends solely on TCR triggering. On the other hand, and relative to their CD4+ counterparts, CD4− cDC more efficiently stimulate primary iNKT cells, a phenomenon likely due to differential production of co-factors (including IL-12) by cDC. Our data reveal a novel functional difference between splenic CD4+ and CD4− cDC subsets that may be important in immune responses
Human Natural Killer T Cells Are Heterogeneous in Their Capacity to Reprogram Their Effector Functions
BACKGROUND: Natural killer T (NKT) cells are a subset of T cells that help potentiate and regulate immune responses. Although human NKT cell subsets with distinct effector functions have been identified, it is unclear whether the effector functions of these subsets are imprinted during development or can be selectively reprogrammed in the periphery. RESULTS: We found that neonatal NKT cells are predominantly CD4+ and express higher levels of CCR7 and CD62L and lower levels of CD94 and CD161 than adult CD4+ or CD4− NKT cell subsets. Accordingly, neonatal NKT cells were more flexible than adult CD4+ NKT cells in their capacity to acquire Th1- or Th2-like functions upon either cytokine-mediated polarization or ectopic expression of the Th1 or Th2 transcription factors T-bet and GATA-3, respectively. Consistent with their more differentiated phenotype, CD4- NKT cells were predominantly resistant to functional reprogramming and displayed higher cytotoxic function. In contrast to conventional T cells, neither the expression of CXCR3 nor the cytotoxic capacity of neonatal NKT cells could be reprogrammed. CONCLUSIONS AND SIGNIFICANCE: Together, these results suggest that neonatal CD4+, adult CD4+, and adult CD4− NKT may represent unique states of maturation and that some functions of human NKT cells may be developmentally imprinted, while others are acquired similar to conventional T cell subsets during peripheral maturation and differentiation. Given the potent immuno-regulatory functions of NKT cells, these findings have important implications for the development of novel NKT cell-based therapeutics and vaccines
Characterization of the avian trojan gene family reveals contrasting evolutionary constraints
"Trojan" is a leukocyte-specific, cell surface protein originally identified in the chicken. Its molecular function has been hypothesized to be related to anti-apoptosis and the proliferation of immune cells. The Trojan gene has been localized onto the Z sex chromosome. The adjacent two genes also show significant homology to Trojan, suggesting the existence of a novel gene/protein family. Here, we characterize this Trojan family, identify homologues in other species and predict evolutionary constraints on these genes. The two Trojan-related proteins in chicken were predicted as a receptor-type tyrosine phosphatase and a transmembrane protein, bearing a cytoplasmic immuno-receptor tyrosine-based activation motif. We identified the Trojan gene family in ten other bird species and found related genes in three reptiles and a fish species. The phylogenetic analysis of the homologues revealed a gradual diversification among the family members. Evolutionary analyzes of the avian genes predicted that the extracellular regions of the proteins have been subjected to positive selection. Such selection was possibly a response to evolving interacting partners or to pathogen challenges.We also observed an almost complete lack of intracellular positively selected sites, suggesting a conserved signaling mechanism of the molecules. Therefore, the contrasting patterns of selection likely correlate with the interaction and signaling potential of the molecules
Prólogo. Las últimas novelas de Carmen Martín Gaite
Il prologo (pp. 9-45) al secondo volume delle opere complete in 7 voll. di Carmen Martín Gaite (1925-2000), affronta i romanzi che resero internazionalmente famosa l’autrice nell’ultima decade del ‘900: "Caperucita en Manhattan", "Nubosidad variable", "La reina de las nieves", "Lo raro es vivir", "Irse de casa" e "Los parentescos". Si evidenziano i motivi ricorrenti nella narrativa ibrida dell’autrice, quali il finale aperto, la superiorità dell’oralità sulla scrittura, l’intreccio fra linguaggio verbale e arti visive. Con il riferimento alle immagini di fotografie, quadri, collages e disegni viene infatti meno la coerenza dell’argomentazione, fondata sull’ermeneutica del frammento
Role of ITAM signaling module in signal integration
Diverse cell types use a small number of evolutionarily conserved signaling modules to integrate external cues and elicit distinct functions. A question thus arises as to how does a receptor, which contains a single signaling module, produce distinct outcomes to diverse signals, particularly if such module is shared amongst a family of receptors? Emerging data suggest that many immunoreceptors, all of which use a conserved ITAM-module for their signaling, can couple with members of additional classes of membrane receptors to deliver unique signal(s) to the cell. We discuss the possible biological purposes and mechanisms behind these interactions at the plasma membrane. We offer a conceptual framework to understand information processing within the immune system and discuss the new biology of old receptors involving their structural and functional collaborations that evolved to deliver unique signal(s) to the cell using a limited set of conserved signaling modules
Integration of cytokine and heterologous receptor signaling pathways
Cytokines are soluble mediators of cell communication that are critical in immune regulation. They induce specific gene-expression programs in responsive cells. Recent findings, however, indicate that cytokine receptors can regulate immune cell functions by transcription-independent mechanisms. Here we review the current understanding of how cytokine signaling regulates the functions of other signaling pathways by first discussing the 'traditional' transcription-mediated consequences of cytokine signaling and then providing a detailed description of transcription-independent lateral communications between cytokine receptors and other cellular receptors
- …
