48 research outputs found
Effects of High-Volume Versus High-Load Resistance Training on Skeletal Muscle Growth and Molecular Adaptations
We evaluated the effects of higher-load (HL) versus (lower-load) higher-volume (HV) resistance training on skeletal muscle hypertrophy, strength, and muscle-level molecular adaptations. Trained men (n = 15, age: 23 ± 3 years; training experience: 7 ± 3 years) performed unilateral lower-body training for 6 weeks (3× weekly), where single legs were randomly assigned to HV and HL paradigms. Vastus lateralis (VL) biopsies were obtained prior to study initiation (PRE) as well as 3 days (POST) and 10 days following the last training bout (POSTPR). Body composition and strength tests were performed at each testing session, and biochemical assays were performed on muscle tissue after study completion. Two-way within-subject repeated measures ANOVAs were performed on most dependent variables, and tracer data were compared using dependent samples t-tests. A significant interaction existed for VL muscle cross-sectional area (assessed via magnetic resonance imaging; interaction p = 0.046), where HV increased this metric from PRE to POST (+3.2%, p = 0.018) whereas HL training did not (−0.1%, p = 0.475). Additionally, HL increased leg extensor strength more so than HV training (interaction p = 0.032; HV \u3c HL at POST and POSTPR, p \u3c 0.025 for each). Six-week integrated non-myofibrillar protein synthesis (iNon-MyoPS) rates were also higher in the HV versus HL condition, while no difference between conditions existed for iMyoPS rates. No interactions existed for other strength, VL morphology variables, or the relative abundances of major muscle proteins. Compared to HL training, 6 weeks of HV training in previously trained men optimizes VL hypertrophy in lieu of enhanced iNon-MyoPS rates, and this warrants future research
Zinc Nanoparticles Enhance Brain Connectivity in the Canine Olfactory Network: Evidence From an fMRI Study in Unrestrained Awake Dogs
Prior functional Magnetic Resonance Imaging (fMRI) studies have indicated increased neural activation when zinc nanoparticles are added to odorants in canines. Here we demonstrate that zinc nanoparticles up-regulate directional brain connectivity in parts of the canine olfactory network. This provides an explanation for previously reported enhancement in the odor detection capability of the dogs in the presence of zinc nanoparticles. In this study, we obtained fMRI data from awake and unrestrained dogs while they were being exposed to odorants with and without zinc nanoparticles, zinc nanoparticles suspended in water vapor, as well as just water vapor alone. We obtained directional connectivity between the brain regions of the olfactory network that were significantly stronger for the condition of odorant + zinc nanoparticles compared to just odorants, water vapor + zinc nanoparticles and water vapor alone. We observed significant strengthening of the paths of the canine olfactory network in the presence of zinc nanoparticles. This result indicates that zinc nanoparticles could potentially be used to increase canine detection capabilities in the environments of very low concentrations of the odorants, which would have otherwise been undetected
Hip thrust and back squat training elicit similar gluteus muscle hypertrophy and transfer similarly to the deadlift
We examined how set-volume equated resistance training using either the back squat (SQ) or hip thrust (HT) affected hypertrophy and various strength outcomes. Untrained college-aged participants were randomized into HT (n = 18) or SQ (n = 16) groups. Surface electromyograms (sEMG) from the right gluteus maximus and medius muscles were obtained during the first training session. Participants completed 9 weeks of supervised training (15–17 sessions), before and after which gluteus and leg muscle cross-sectional area (mCSA) was assessed via magnetic resonance imaging. Strength was also assessed prior to and after the training intervention via three-repetition maximum (3RM) testing and an isometric wall push test. Gluteus mCSA increases were similar across both groups. Specifically, estimates [(−) favors HT (+) favors SQ] modestly favored the HT versus SQ for lower [effect ±SE, −1.6 ± 2.1 cm2; CI95% (−6.1, 2.0)], mid [−0.5 ± 1.7 cm2; CI95% (−4.0, 2.6)], and upper [−0.5 ± 2.6 cm2; CI95% (−5.8, 4.1)] gluteal mCSAs but with appreciable variance. Gluteus medius + minimus [−1.8 ± 1.5 cm2; CI95% (−4.6, 1.4)] and hamstrings [0.1 ± 0.6 cm2; CI95% (−0.9, 1.4)] mCSA demonstrated little to no growth with small differences between groups. mCSA changes were greater in SQ for the quadriceps [3.6 ± 1.5 cm2; CI95% (0.7, 6.4)] and adductors [2.5 ± 0.7 cm2; CI95% (1.2, 3.9)]. Squat 3RM increases favored SQ [14 ± 2 kg; CI95% (9, 18),] and hip thrust 3RM favored HT [−26 ± 5 kg; CI95% (−34, −16)]. 3RM deadlift [0 ± 2 kg; CI95% (−4, 3)] and wall push strength [−7 ± 12N; CI95% (−32, 17)] similarly improved. All measured gluteal sites showed greater mean sEMG amplitudes during the first bout hip thrust versus squat set, but this did not consistently predict gluteal hypertrophy outcomes. Squat and hip thrust training elicited similar gluteal hypertrophy, greater thigh hypertrophy in SQ, strength increases that favored exercise allocation, and similar deadlift and wall push strength increases
Noninvasive Tracking Of Cardiac Embryonic Stem Cells In Vivo Using Magnetic Resonance Imaging Techniques
Despite rapid advances in the stem cell field, the ability to identify and track transplanted or migrating stem cells in vivo is limited. To overcome this limitation, we used magnetic resonance imaging (MRI) to detect and follow transplanted stem cells over a period of 28 days in mice using an established myocardial infarction model. Pluripotent mouse embryonic stem (mES) cells were expanded and induced to differentiate into beating cardiomyocytes in vitro. The cardiac-differentiated mES cells were then loaded with superparamagnetic fluorescent microspheres (1.63 μm in diameter) and transplanted into ischemic myocardium immediately following ligation and subsequent reperfusion of the left anterior descending coronary artery. To identify the transplanted stem cells in vivo, MRI was performed using a Varian Inova 4.7 Tesla scanner. Our results show that (a) the cardiac-differentiated mES were effectively loaded with superparamagnetic microspheres in vitro, (b) the microsphere-loaded mES cells continued to beat in culture prior to transplantation, (c) the transplanted mES cells were readily detected in the heart in vivo using noninvasive MRI techniques, (d) the transplanted stem cells were detected in ischemic myocardium for the entire 28-day duration of the study as confirmed by MRI and post-mortem histological analyses, and (e) concurrent functional MRI indicated typical loss of cardiac function, although significant amelioration of remodeling was noted after 28 days in hearts that received transplanted stem cells. These results demonstrate that it is feasible to simultaneously track transplanted stem cells and monitor cardiac function in vivo over an extended period using noninvasive MRI techniques. ©AlphaMed Press
A Magnetic Resonance Imaging Contrast Agent Capable of Detecting Hydrogen Peroxide
The redox-active ligand <i>N</i>-(2-hydroxy-5-methylbenzyl)-<i>N</i>,<i>N</i>′,<i>N</i>′-trisÂ(2-pyridinylmethyl)-1,2-ethanediamine
(Hptp1) was prepared and complexed to manganeseÂ(II). The isolated
[MnÂ(Hptp1)Â(MeCN)]<sup>2+</sup> serves as a magnetic resonance imaging
contrast agent, with an <i>r</i><sub>1</sub> value comparable
to those of other mononuclear gadoliniumÂ(III) and manganeseÂ(II) complexes.
The metal and ligand are stable in aerated aqueous solutions, but
the addition of H<sub>2</sub>O<sub>2</sub> causes the complex to oxidatively
couple to itself through a bimolecular reaction involving the phenol
groups of two Hptp1 ligands. The binuclear product is less paramagnetic
per manganeseÂ(II) than its mononuclear precursor, lowering the measured <i>r</i><sub>1</sub> per manganeseÂ(II). The manganeseÂ(II) complex
with Hptp1 can thereby serve as a sensor for oxidative stress