7,150 research outputs found

    Correlations in hot and dense quark matter

    Get PDF
    We present a relativistic three-body equation to investigate three-quark clusters in hot and dense quark matter. To derive such an equation we use the Dyson equation approach. The equation systematically includes the Pauli blocking factors as well as the self energy corrections of quarks. Special relativity is realized through the light front form. Presently we use a zero-range force and investigate the Mott transition.Comment: 6 pages, 4 figure, Few-Body Systems style file

    Dynamics of few-body states in a medium

    Full text link
    Strongly interacting matter such as nuclear or quark matter leads to few-body bound states and correlations of the constituents. As a consequence quantum chromodynamics has a rich phase structure with spontaneous symmetry breaking, superconductivity, condensates of different kinds. All this appears in many astrophysical scenarios. Among them is the formation of hadrns during the early stage of the Universe, the structure of a neutron star, the formation of nuclei during a supernova explosion. Some of these extreme conditions can be simulated in heavy ion colliders. To treat such a hot and dense system we use the Green function formalism of many-body theory. It turns out that a systematic Dyson expansion of the Green functions leads to modified few-body equations that are capable to describe phase transitions, condensates, cluster formation and more. These equations include self energy corrections and Pauli blocking. We apply this method to nonrelativistic and relativistic matter. The latter one is treated on the light front. Because of the medium and the inevitable truncation of space, the few-body dynamics and states depend on the thermodynamic parameters of the medium.Comment: 3 pages, 2 figures, talk presented at the 19th European Conference on Few-Body System

    Investigating the Physical Origin of Unconventional Low-Energy Excitations and Pseudogap Phenomena in Cuprate Superconductors

    Full text link
    We investigate the physical origin of unconventional low-energy excitations in cuprate superconductors by considering the effect of coexisting competing orders (CO) and superconductivity (SC) and of quantum fluctuations and other bosonic modes on the low-energy charge excitation spectra. By incorporating both SC and CO in the bare Green's function and quantum phase fluctuations in the self-energy, we can consistently account for various empirical findings in both the hole- and electron-type cuprates, including the excess subgap quasiparticle density of states, ``dichotomy'' in the fluctuation-renormalized quasiparticle spectral density in momentum space, and the occurrence and magnitude of a low-energy pseudogap being dependent on the relative gap strength of CO and SC. Comparing these calculated results with experiments of ours and others, we suggest that there are two energy scales associated with the pseudogap phenomena, with the high-energy pseudogap probably of magnetic origin and the low-energy pseudogap associated with competing orders.Comment: 10 pages, 5 figures. Invited paper for the 2006 Taiwan International Conference on Superconductivity. Correspondence author: Nai-Chang Yeh (e-mail: [email protected]

    Pressure-dependent optical investigations of α\alpha-(BEDT-TTF)2_2I3_3: tuning charge order and narrow gap towards a Dirac semimetal

    Full text link
    Infrared optical investigations of α\alpha-(BEDT-TTF)2_2I3_3 have been performed in the spectral range from 80 to 8000~cm−1^{-1} down to temperatures as low as 10~K by applying hydrostatic pressure. In the metallic state, T>135T > 135~K, we observe a 50\% increase in the Drude contribution as well as the mid-infrared band due to the growing intermolecular orbital overlap with pressure up to 11~kbar. In the ordered state, T<TCOT<T_{\rm CO}, we extract how the electronic charge per molecule varies with temperature and pressure: Transport and optical studies demonstrate that charge order and metal-insulator transition coincide and consistently yield a linear decrease of the transition temperature TCOT_{\rm CO} by 8−98-9~K/kbar. The charge disproportionation Δρ\Delta\rho diminishes by 0.017 e0.017~e/kbar and the optical gap Δ\Delta between the bands decreases with pressure by -47~cm−1^{-1}/kbar. In our high-pressure and low-temperature experiments, we do observe contributions from the massive charge carriers as well as from massless Dirac electrons to the low-frequency optical conductivity, however, without being able to disentangle them unambiguously.Comment: 13 pages, 17 figures, submitted to Phys. Rev.

    An Integral Spectral Representation of the Propagator for the Wave Equation in the Kerr Geometry

    Get PDF
    We consider the scalar wave equation in the Kerr geometry for Cauchy data which is smooth and compactly supported outside the event horizon. We derive an integral representation which expresses the solution as a superposition of solutions of the radial and angular ODEs which arise in the separation of variables. In particular, we prove completeness of the solutions of the separated ODEs. This integral representation is a suitable starting point for a detailed analysis of the long-time dynamics of scalar waves in the Kerr geometry.Comment: 41 pages, 4 figures, minor correction

    Experimental investigation of the asymmetric spectroscopic characteristics of electron- and hole-doped cuprates

    Get PDF
    Quasiparticle tunneling spectroscopic studies of electron- (n-type) and hole-doped (p-type) cuprates reveal that the pairing symmetry, pseudogap phenomenon and spatial homogeneity of the superconducting order parameter are all non-universal. We compare our studies of p-type YBa2Cu3O7-delta and n-type infinite-layer Sr(0.9)Ln(0.1)CuO(2) (Ln = La, Gd) systems with results from p-type Bi2Sr2CaCu2Ox and n-type one-layer Nd1.85Ce0.15CuO4 cuprates, and attribute various non-universal behavior to different competing orders in p-type and n-type cuprates

    Benchmark generator for CEC 2009 competition on dynamic optimization

    Get PDF
    Evolutionary algorithms(EAs) have been widely applied to solve stationary optimization problems. However, many real-world applications are actually dynamic. In order to study the performance of EAs in dynamic environments, one important task is to develop proper dynamic benchmark problems. Over the years, researchers have applied a number of dynamic test problems to compare the performance of EAs in dynamic environments, e.g., the “moving peaks ” benchmark (MPB) proposed by Branke [1], the DF1 generator introduced by Morrison and De Jong [6], the singleand multi-objective dynamic test problem generator by dynamically combining different objective functions of exiting stationary multi-objective benchmark problems suggested by Jin and Sendhoff [2], Yang and Yao’s exclusive-or (XOR) operator [10, 11, 12], Kang’s dynamic traveling salesman problem (DTSP) [3] and dynamic multi knapsack problem (DKP), etc. Though a number of DOP generators exist in the literature, there is no unified approach of constructing dynamic problems across the binary space, real space and combinatorial space so far. This report uses the generalized dynamic benchmark generator (GDBG) proposed in [4], which construct dynamic environments for all the three solution spaces. Especially, in the rea
    • 

    corecore