6,998 research outputs found

    The implications of Methylphenidate use by healthy medical students and doctors in South Africa

    Get PDF
    Background: The use of medical stimulants to sustain attention, augment memory and enhance intellectual capacity is increasing in society. The use of Methylphenidate for cognitive enhancement is a subject that has received much attention in the literature and academic circles in recent times globally. Medical doctors and medical students appear to be equally involved in the off-label use of Methylphenidate. This presents a potential harm to society and the individual as the long-term side effect profile of this medication is unknown. Discussion: The implication of the use of Methylphenidate by medical students and doctors has not been fully explored. This article considers the impact of this use on the traditional role of medicine, society, the patient and suggests a way forward. We discuss the salient philosophy surrounding the use of cognitive enhancement. We query whether there are cognitive benefits to the use of Methylphenidate in healthy students and doctors and whether these benefits would outweigh the risks in taking the medication. Could these benefits lead to tangible outcomes for society and could the off label-use of Methylphenidate potentially undermine the medical profession and the treatment of patients? If cognitive benefits are proven then doctors may be coerced explicitly or implicitly to use the drug which may undermine their autonomy. The increased appeal of cognitive enhancement challenges the traditional role of medicine in society, and calls into question the role of a virtuous life as a contributing factor for achievement. In countries with vast economic disparity such as South Africa an enhancement of personal utility that can be bought may lead to greater inequities. Summary: Under the status quo the distribution of methylphenidate is unjust. Regulatory governmental policy must seek to remedy this while minimising the potential for competitive advantage for the enhanced. Public debate on the use of cognitive enhancement is long overdue and must be stimulated. The use of Methylphenidate for cognitive enhancement is philosophically defendable if long-term research can prove that the risks are negligible and the outcomes tangible

    Experimental investigation of the competing orders and quantum criticality in hole- and electron-doped cuprate superconductors

    Get PDF
    We investigate the issues of competing orders and quantum criticality in cuprate superconductors via experimental studies of the high-field thermodynamic phase diagrams and the quasiparticle tunneling spectroscopy. Substantial field-induced quantum fluctuations are found in all cuprates investigated, and the corresponding correlation with quasiparticle spectra suggest that both electron- (n-type) and hole-doped (p-type) cuprate superconductors are in close proximity to a quantum critical point that separates a pure superconducting (SC) phase from a phase consisting of coexisting SC and a competing order. We further suggests that the relevant competing order is likely a spin-density wave (SDW) or a charge density wave (CDW), which can couple efficiently to an in-plane Cu-O bond stretching longitudinal optical (LO) phonon mode in the p-type cuprates but not in the n-type cuprates. This cooperative interaction may account for the pseudogap phenomenon above T, only in the p-type cuprate superconductors

    Systems development methods and usability in Norway: An industrial perspective

    Get PDF
    This is the post-print version of the Article. The official published version can be accessed from the link below - Copyright @ 2007 Springer Berlin HeidelbergThis paper investigates the relationship between traditional systems development methodologies and usability, through a survey of 78 Norwegian IT companies. Building on previous research we proposed two hypotheses; (1) that software companies will generally pay lip service to usability, but do not prioritize it in industrial projects, and (2) that systems development methods and usability are perceived as not being integrated. We find support for both hypotheses. Thus, the use of systems development methods is fairly stable, confirming earlier research. Most companies do not use a formal method, and of those who do, the majority use their own method. Generally, the use of methods is rather pragmatic: Companies that do not use formal methods report that they use elements from such methods. Further, companies that use their own method import elements from standardised methods into their own

    Disentanglement of the electronic and lattice parts of the order parameter in a 1D Charge Density Wave system probed by femtosecond spectroscopy

    Full text link
    We report on the high resolution studies of the temperature (T) dependence of the q=0 phonon spectrum in the quasi one-dimensional charge density wave (CDW) compound K0.3MoO3 utilizing time-resolved optical spectroscopy. Numerous modes that appear below Tc show pronounced T-dependences of their amplitudes, frequencies and dampings. Utilizing the time-dependent Ginzburg-Landau theory we show that these modes result from linear coupling of the electronic part of the order parameter to the 2kF phonons, while the (electronic) CDW amplitude mode is overdamped.Comment: 4 pages, 3 figures + supplementary material, accepted for publication in Phys. Rev. Let

    Quasiparticle spectroscopy and high-field phase diagrams of cuprate superconductors -- An investigation of competing orders and quantum criticality

    Get PDF
    We present scanning tunneling spectroscopic and high-field thermodynamic studies of hole- and electron-doped (p- and n-type) cuprate superconductors. Our experimental results are consistent with the notion that the ground state of cuprates is in proximity to a quantum critical point (QCP) that separates a pure superconducting (SC) phase from a phase comprised of coexisting SC and a competing order, and the competing order is likely a spin-density wave (SDW). The effect of applied magnetic field, tunneling current, and disorder on the revelation of competing orders and on the low-energy excitations of the cuprates is discussed.Comment: 10 pages, 5 figures. Accepted for publication in the International Journal of Modern Physics B. (Correspondence author: Nai-Chang Yeh, e-mail: [email protected]

    Macroscopic evidence for quantum criticality and field-induced quantum fluctuations in cuprate superconductors

    Get PDF
    We present macroscopic experimental evidence for field-induced microscopic quantum fluctuations in different hole- and electron-type cuprate superconductors with varying doping levels and numbers of CuO2_2 layers per unit cell. The significant suppression of the zero-temperature in-plane magnetic irreversibility field relative to the paramagnetic field in all cuprate superconductors suggests strong quantum fluctuations due to the proximity of the cuprates to quantum criticality.Comment: 3 figures. To appear in Phys. Rev. B, Rapid Communications (2007). For correspondence, contact: Nai-Chang Yeh (e-mail: [email protected]

    Parameter-Independent Strategies for pMDPs via POMDPs

    Full text link
    Markov Decision Processes (MDPs) are a popular class of models suitable for solving control decision problems in probabilistic reactive systems. We consider parametric MDPs (pMDPs) that include parameters in some of the transition probabilities to account for stochastic uncertainties of the environment such as noise or input disturbances. We study pMDPs with reachability objectives where the parameter values are unknown and impossible to measure directly during execution, but there is a probability distribution known over the parameter values. We study for the first time computing parameter-independent strategies that are expectation optimal, i.e., optimize the expected reachability probability under the probability distribution over the parameters. We present an encoding of our problem to partially observable MDPs (POMDPs), i.e., a reduction of our problem to computing optimal strategies in POMDPs. We evaluate our method experimentally on several benchmarks: a motivating (repeated) learner model; a series of benchmarks of varying configurations of a robot moving on a grid; and a consensus protocol.Comment: Extended version of a QEST 2018 pape
    • …
    corecore