18 research outputs found

    A GIS-based estimation of soil erosion parameters for soil loss potential and erosion hazard in the city of Kinshasa, the Democratic Republic of Congo

    No full text
    Soil erosion has detrimental impacts on socio economic life, thus increasing poverty. This situation is aggravated by poor planning and lack of infrastructure especially in developing countries. In these countries, efforts to planning are challenged by lack of data. Alternative approaches that use remote sensing and geographical information systems are therefore needed to provide decision makers with the so much needed information for planning purposes. This helps to curb the detrimental impacts of soil erosion, mostly emanating from varied land use conditions. This study was carried out in the city of Kinshasa, the Democratic Republic of Congo with the aim of using alternative sources of data, based on earth observation resources, to determine the spatial distribution of soil loss and erosion hazard in the city of Kinshasa. A combined approach based on remote sensing skills and rational equation of soil erosion estimation was used. Soil erosion factors, including rainfall-runoff erosivity R), soil erodibility (K), slope steepness and length (SL), crop/vegetation and management (C) were calculated for the city of Kinshasa. Results show that soil loss in Kinshasa ranges from 0 to 20 t ha−1 yr−1. Most of the south part of the urban area were prone to erosion. From the total area of Kinshasa (996 500 ha), 25 013 ha (2.3 %) is of very high ( >  15 t ha−1 yr−1) risk of soil erosion. Urban areas consist of 4.3 % of the area with very high ( >  15 t ha−1 yr−1) risk of soil erosion compared to a very high risk of 2.3 % ( >  15 t ha−1 yr−1) in the rural area. The study shows that the soil loss in the study area is mostly driven by slope, elevation, and informal settlements

    Adherence to face mask use during the COVID-19 pandemic among women seeking antenatal care in Kinshasa, Democratic Republic of Congo: a facility-based cross-sectional study

    No full text
    ObjectivesTo describe face mask use among pregnant women seeking antenatal care (ANC) in Kinshasa, Democratic Republic of Congo and to identify factors associated with masking adherence in this population.DesignFacility-based cross-sectional study nested within a prospective cohort study.SettingRandom sample of 10 health facilities, including 5 primary health centers and 5 secondary facilities or hospitals.ParticipantsA total of 934 pregnant women aged 18 years or above with a gestational age of at least 32 weeks were consecutively surveyed from 17 August 2020 to 31 January 2021.Primary and secondary outcome measuresWe estimated the proportions of pregnant women wearing a face mask and masking correctly (ie, over the mouth and nose), and assessed their knowledge regarding the COVID-19 pandemic. Multivariable logistic regression was employed to identify factors associated with overall and correct face mask use.ResultsOverall, 309 (33.1%) women wore a mask during the interview after their antenatal appointments, but only 33 (10.7%) wore a mask correctly. The odds of masking and correct mask use were significantly higher among women who had their ANC visit in a facility that provided COVID-19 care. Additionally, women who experienced COVID-19-like symptoms in the past 6 months had higher odds of wearing a mask correctly compared with those reporting no recent symptoms. Although 908 (97.2%) women were aware of the COVID-19 pandemic, only 611 (67.3%) thought that COVID-19 was circulating locally in Kinshasa.ConclusionOverall and correct face mask adherence levels were low among pregnant women attending ANC in Kinshasa. Our study highlights the need for improving adherence to correct face mask use in order to help control the spread of COVID-19 within Kinshasa alongside other control measures, like vaccination

    Gas Transfer at Water Surfaces 2010

    Get PDF
    PrefaceSection 1: Interfacial Turbulence and Air-Water Scalar TransferJ. Hunt, S. Belcher, D. Stretch, S. Sajjadi, J. Clegg [1]S.A. Kitaigorodskii [13]S.A. Kitaigorodskii [29]Y. Toba [38]D. Turney, S. Banerjee [51]J.G. Janzen, H.E. Schulz, G.H. Jirka [65]S. Komori, R. Kurose, N. Takagaki, S. Ohtsubo, K. Iwano, K. Handa, S. Shimada [78]J. Beya, W. Peirson, M. Banner [90]S. Mizuno [104]M. Sanjou, I. Nezu, A. Toda [119]M. Sanjou, I. Nezu, Y. Akiya [129]K. Takehara, Y. Takano, T.G. Etoh [138]G. Caulliez [151]Section 2: Numerical Studies on Interfacial Turbulence and Scalar TransferL.-P. Hung, C.S. Garbe, W.-T. Tsai [165]A. E. Tejada-MartĂ­nez, C. Akan, C.E. Grosch [177]W.-T. Tsai, L.-P. Hung [193]P.G. Jayathilake, B.C. Khoo, Zhijun Tan [200]H.E. Schulz, A.L.A. SimĂ”es, J.G. Janzen [208]Section 3: Bubble-Mediated Scalar TransferD.P. Nicholson, S.R. Emerson, S. Khatiwala, R.C. Hamme [223]W. Mischler, R. Rocholz, B. JĂ€hne [238]R. Patro, I. Leifer [249]K. Loh, K.B. Cheong, R. Uittenbogaard [262]N. Mori, S. Nakagawa [273]Section 4: Effects of Surfactants and Molecular Diffusivity on Turbulence and Scalar TransferA. Soloviev, S. Matt, M. Gilman, H. HĂŒhnerfuss, B. Haus, D. Jeong, I. Savelyev, M. Donelan [285]S. Matt, A. Fujimura, A. Soloviev, S.H. Rhee [299]P. Vlahos, E.C. Monahan, B.J.Huebert, J.B. Edson [313]K.E. Richter, B. JĂ€hne [322]X. Yan, W.L. Peirson, J.W. Walker, M.L. Banner [333]Section 5: Field MeasurementsP.M. Orton, C.J. Zappa, W.R. McGillis [343]U.Schimpf, L. Nagel, B. JĂ€hne [358]C.L. McNeil, E.A. D'Asaro, J.A. Nystuen [368]D. Turk, B. Petelin, J.W. Book [377]M. Ribas-Ribas, A. GĂłmez-Parra, J.M. Forja [394]A. Rutgersson, A.-S. Smedman, E. SahlĂ©e [406]H. Pettersson, K. K. Kahma, A. Rutgersson, M. PerttilĂ€ [420]Section 6: Global Air-Sea CO2 FluxesR. Wanninkhof, G.-H. Park, D.B. Chelton, C.M. Risien [431]N. Suzuki, S. Komori, M.A. Donelan [445]Y. Suzuki, Y. Toba [452]M.T. Johnson, C. Hughes, T.G. Bell, P.S. Liss [464]Section 7: Advanced Measuring TechniquesO. Tsukamoto, F. Kondo [485]R. Rocholz, S. Wanner, U. Schimpf, B. JĂ€hne [496]B.C.G. Gonzalez, A.W. Lamon, J.G. Janzen, J.R. Campos, H.E. Schulz [507]E. SahlĂ©e, K. Kahma, H. Pettersson, W.M. Drennan [516]D. Kiefhaber, R. Rocholz, G. Balschbach, B. JĂ€hne [524]C.S. Garbe, A. Heinlein [535]Section 8: Environmental Problems Related to Air-Water Scalar TransferW.L. Peirson, G.A. Lee, C. Waite, P. Onesemo, G. Ninaus [545]Y.J. Choi, A. Abe, K. Takahashi [559]Y. Baba, K. Takahashi [571]R. Onishi, K. Takahashi, S. Komori [582][593]Turbulence and wave dynamics across gas-liquid interfacesThe calculation of the gas transfer between the ocean and atmosphereThe influence of wind wave breaking on the dissipation of the turbulent kinetic energy in the upper ocean and its dependence on the stage of wind wave developmentMarvellous self-consistency inherent in wind waves : Its origin and some items related to air-sea transfersNear surface turbulence and its relationship to air-water gas transfer ratesTurbulent gas flux measurements near the air-water interface in an oscillating-grid tankSensible and latent heat transfer across the air-water interface in wind-driven turbulenceRainfall-generated, near-surface turbulenceEffects of the mechanical wave propagating in the wind direction on currents and stresses across the air-water interfaceTurbulent transport in closed basin with wind-induced water wavesPIV measurements of Langumuir circulation generated by wind-induced water wavesStudy of vortices near wind wave surfaces using high-speed video camera and MLSWind wave breaking from micro to macroscaleValidation of Eddy-renewal model by numerical simulationMass transfer at the surface in LES of wind-driven shallow water flow with Langmuir circulationCharacteristics of gas-flux density distribution at the water surfacesNumerical simulation of interfacial mass transfer using the immersed interface methodStatistical approximations in gas-liquid mass transferAn inverse approach to estimate bubble-mediated air-sea gas flux from inert gas measurementsExperimental setup for the investigation of bubble mediated gas exchangeGas transfer velocity of single CO2 bubblesMass transfer across single bubblesAeration of surf zone breaking wavesModification of turbulence at the air-sea interface due to the presence of surfactants and implications for gas exchange. Part I: laboratory experimentModification of turbulence at the air-sea interface due to the presence of surfactants and implications for gas exchange. Part II: numerical simulationsWind-dependence of DMS transfer velocity: Comparison of model with recent southern ocean observationsA laboratory study of the Schmidt number dependency of air-water gas transferOn transitions in the Schmidt number dependency of low solubility gas transfer across air-water interfacesAn autonomous self-orienting catamaran (SOCa) for measuring air-water fluxes and forcingThe 2009 SOPRAN active thermography pilot experiment in the Baltic SeaObservations of air-sea exchange of N2 and O2 during the passage of Hurricane Gustav in the Gulf of Mexico during 2008The effect of high wind Bora events on water pCO2 and CO2 exchange in the coastal Northern AdriaticSeasonal sea-surface CO2 fugacity in the north-eastern shelf of the Gulf of CĂĄdiz (southwest Iberian Peninsula)Including mixed layer convection when determining air-sea CO2 transfer velocityAir-sea carbon dioxide exchange during upwellingImpact of small-scale variability on air-sea CO2 fluxesThe effect of wind variability on the air-sea CO2 gas flux estimationFuture global mapping of air-sea CO2 flux by using wind and wind-wave distribution of CMIP3 multi-model ensembleA Rumsfeldian analysis of uncertainty in air-sea gas exchangeAccurate measurement of air-sea CO2 flux with open-path Eddy-CovarianceCombined Visualization of wind waves and water surface temperatureMicroscopic sensors for oxygen measurement at air-water interfaces and sediment biofilmsDamping of humidity fluctuations in a closed-path systemImproved Optical Instrument for the Measurement of Water Wave Statistics in the FieldFriction Velocity from Active Thermography and Shape AnalysisEvaporation mitigation by storage in rock and sandDevelopment of oil-spill simulation system based on the global ocean-atmosphere modelStructure variation dependence of tropical squall line on the tracer advection scheme in cloud-resolving modelHigh-resolution simulations for turbulent clouds developing over the oceAuthor Inde
    corecore