17 research outputs found

    SOLENOPSIS INVICTA VIRUS (SINV-1) INFECTION AND INSECTICIDE INTERACTIONS IN THE RED IMPORTED FIRE ANT (HYMENOPTERA: FORMICIDAE)

    Get PDF
    Controlling invasive species is a growing concern; however, pesticides can be detrimental for non-target organisms. The red imported fire ant (Solenopsis invicta Buren; Hymenoptera: Formicidae) has aggressively invaded ~138 million ha in the USA and causes over $6 billion in damage and control efforts annually (Valles 2011). Myriad research studies have been conducted to discover safe biological control agents to manage these invasive pests (Valles et al. 2004; Milks et al. 2008; Oi et al. 2009; Yang et al. 2009; Wang et al. 2010; Callcott et al. 2011; Porter et al. 2011; Tufts et al. 2011). Viruses may be lethal due to modifications of cellular processes and induction of defense responses or may produce distinct survival outcomes depending on species (i.e. ascoviruses) (Stasiak et al. 2005). The Solenopsis invicta virus (SINV-1) is a positive sense, single-stranded RNA virus, which can only infect the genus Solenopsis at all stages of development, and is verticallytransmitted within a colony (Valles et al. 2004; Valles 2012)

    Age Determination of the Glassy-Winged Sharpshooter, Homalodisca vitripennis, using Wing Pigmentation

    Get PDF
    A red pigment is contained in the wing veins of the glassy-winged sharpshooter, Homalodisca vitripennis (Hemiptera: Cicadellidae). This insect is the main vector of the plant-pathogenic bacterium Xylella fastidiosa Wells (Xanthomonadales: Xanthomonadaceae), the causal agent of Pierce's disease of grapevines. Over the course of the H. vitripennis lifespan, the red pigment darkens and eventually becomes brown/black in color. These pigments are believed to be pheomelanin and eumelanin, respectively. The age of H. vitripennis can be determined by calculating the amount of red pigment found in the wings by analyzing high resolution wing photographs with image analysis software. In this study, a standard curve for the age determination of H. vitripennis was developed using laboratory—reared insects of known ages varying from 1 to 60 days. The impact of three environmental conditions on these readings was also investigated and found to have little effect on the age determination, and could be easily accounted for. Finally, field collected insects from several Central Texas vineyards were successfully analyzed for age determination suggesting that the annually reported influx of H. vitripennis was composed almost entirely of older insects

    Detection and Analysis of the Bacterium, Xylella fastidiosa, in Glassy-Winged Sharpshooter, Homalodisca vitripennis, Populations in Texas

    Get PDF
    The glassy-winged sharpshooter, Homalodisca vitripeninis Germar (Hemiptera: Cicadellidae), is a xylophagous insect that is an endemic pest of several economically important plants in Texas. H. vitripennis is the main vector of Xylella fastidiosa Wells (Xanthomonadales: Xanthomonadaceae), the bacterium that causes Pierce's disease of grapevine and can travel long distances putting much of Texas grape production at risk. Understanding the movement of H. vitripennis populations capable of transmitting X. fastidiosa into Pierce's-disease-free areas is critical for developing a management program for Pierce's disease. To that end, the USDA-APHIS has developed a program to sample vineyards across Texas to monitor populations of H. vitripennis. From this sampling, H vitripennis collected during 2005 and 2006 over the months of May, June, and July from eight vineyards in different regions of Texas were recovered from yellow sticky traps and tested for the presence of X. fastidiosa. The foregut contents were vacuum extracted and analyzed using RT-PCR to determine the percentage of H. vitripennis within each population that harbor X. fastidiosa and have the potential to transmit this pathogen. H. vitripennis from vineyards known to have Pierce's disease routinely tested positive for the presence of X. fastidiosa. While almost all H. vitripennis collected from vineyards with no history of Pierce's disease tested negative for the presence of the pathogen, three individual insects tested positive. Furthermore, all three insects were determined, by DNA sequencing, to be carrying a strain of X. fastidiosa homologous to known Pierce's disease strains, signifying them as a risk factor for new X. fastidiosa infections

    SOLENOPSIS INVICTA VIRUS (SINV-1) INFECTION AND INSECTICIDE INTERACTIONS IN THE RED IMPORTED FIRE ANT (HYMENOPTERA: FORMICIDAE)

    Get PDF
    Controlling invasive species is a growing concern; however, pesticides can be detrimental for non-target organisms. The red imported fire ant (Solenopsis invicta Buren; Hymenoptera: Formicidae) has aggressively invaded ~138 million ha in the USA and causes over $6 billion in damage and control efforts annually (Valles 2011). Myriad research studies have been conducted to discover safe biological control agents to manage these invasive pests (Valles et al. 2004; Milks et al. 2008; Oi et al. 2009; Yang et al. 2009; Wang et al. 2010; Callcott et al. 2011; Porter et al. 2011; Tufts et al. 2011). Viruses may be lethal due to modifications of cellular processes and induction of defense responses or may produce distinct survival outcomes depending on species (i.e. ascoviruses) (Stasiak et al. 2005). The Solenopsis invicta virus (SINV-1) is a positive sense, single-stranded RNA virus, which can only infect the genus Solenopsis at all stages of development, and is verticallytransmitted within a colony (Valles et al. 2004; Valles 2012)

    Manipulation of Viral Titers of Solenopsis invicta

    No full text

    Low-Level Detection of Candidatus

    No full text
    corecore