50 research outputs found

    Dielectric response of modified Hubbard models with neutral-ionic and Peierls transitions

    Full text link
    The dipole P(F) of systems with periodic boundary conditions (PBC) in a static electric field F is applied to one-dimensional Peierls-Hubbard models for organic charge-transfer (CT) salts. Exact results for P(F) are obtained for finite systems of N = 14 and 16 sites that are almost converged to infinite chains in deformable lattices subject to a Peierls transition. The electronic polarizability per site, \alpha_{el} = (\partial P/\partial F)_0, of rigid stacks with alternating transfer integrals t(1 +/- \delta) diverges at the neutral-ionic transition for \delta = 0 but remains finite for \delta > 0 in dimerized chains. The Peierls or dimerization mode couples to charge fluctuations along the stack and results in large vibrational contributions, \alpha_{vib}, that are related to \partial P/\partial \delta and that peak sharply at the Peierls transition. The extension of P(F) to correlated electronic states yields the dielectric response \kappa of models with neutral-ionic or Peierls transitions, where \kappa peaks >100 are found with parameters used previously for variable ionicity \rho and vibrational spectra of CT salts. The calculated \kappa accounts for the dielectric response of CT salts based on substituted TTFs (tetrathiafulvalene) and substituted CAs (chloranil). The role of lattice stiffness appears clearly in models: soft systems have a Peierls instability at small \rho and continuous crossover to large \rho, while stiff stacks such as TTF-CA have a first-order transition with discontinuous \rho that is both a neutral-ionic and Peierls transition. The transitions are associated with tuning the electronic ground state of insulators via temperature or pressure in experiments, or via model parameters in calculations.Comment: 10 pages, 9 figures; J.Chem.Phys., in pres

    The Danger Is Growing! A New Paradigm for Immune System Activation and Peripheral Tolerance

    Get PDF
    Successful immune defense is a complex balancing act. In order to protect a host against invasion by harmful pathogens, an immune response must be rapid and vigorous, and must eliminate foreign invaders before their populations grow beyond control. That same immune response, however, must be selective enough to recognize and ignore commensal bacteria, environmental antigens and host tissue itself. How the immune system makes the crucial decision whether or not to attack a particular antigen has been a long-standing question central to the study of immunology. Here we show that the structure of the signaling network between regulatory T-cells and type 17 helper T-cells allows the immune system to selectively attack pathogens based on whether or not the pathogens represent a growing, and thus dangerous population. We term this mechanism for immune system activation the ‘Growth Detection Paradigm’, because it offers an entirely new explanation for immune system regulation and peripheral tolerance

    Response of macroarthropod assemblages to the loss of hemlock (Tsuga canadensis), a foundation species

    Get PDF
    In eastern North American forests, eastern hemlock (Tsuga canadensis) is a foundation species. As hemlock is lost from forests due to the invasive hemlock woolly adelgid (Adelges tsugae) and preemptive salvage logging, the structure of assemblages of species associated with hemlock is expected to change. We manipulated hemlock canopy structure at hectare scales to investigate the effects of hemlock death on assemblages of ants, beetles, and spiders in a New England forest. Relative to reference hemlock stands, both in situ death of hemlock and logging and removal of hemlock altered composition and diversity of beetles and spiders, and logging increased the species richness and evenness of ant assemblages. Species composition of ant assemblages in disturbed habitats was non-random relative to the regional species pool, but we found no evidence that interspecific competition shaped the structure of ant, beetle, or spider assemblages, in either manipulated or intact forest stands. Environmental filtering by hemlock appears to maintain low levels of species richness and evenness in forest stands, suggesting that the loss of hemlock due to the hemlock woolly adelgid or human activities will not likely lead to extirpations of ant, beetle, or spider species at local scales

    Response of macroarthropod assemblages to the loss of hemlock (Tsuga canadensis), a foundation species

    Get PDF
    In eastern North American forests, eastern hemlock (Tsuga canadensis) is a foundation species. As hemlock is lost from forests due to the invasive hemlock woolly adelgid (Adelges tsugae) and preemptive salvage logging, the structure of assemblages of species associated with hemlock is expected to change. We manipulated hemlock canopy structure at hectare scales to investigate the effects of hemlock death on assemblages of ants, beetles, and spiders in a New England forest. Relative to reference hemlock stands, both in situ death of hemlock and logging and removal of hemlock altered composition and diversity of beetles and spiders, and logging increased the species richness and evenness of ant assemblages. Species composition of ant assemblages in disturbed habitats was non-random relative to the regional species pool, but we found no evidence that interspecific competition shaped the structure of ant, beetle, or spider assemblages, in either manipulated or intact forest stands. Environmental filtering by hemlock appears to maintain low levels of species richness and evenness in forest stands, suggesting that the loss of hemlock due to the hemlock woolly adelgid or human activities will not likely lead to extirpations of ant, beetle, or spider species at local scales

    Managing disease outbreaks: The importance of vector mobility and spatially heterogeneous control

    Get PDF
    This work is licensed under a Creative Commons Attribution 4.0 International License.Management strategies for control of vector-borne diseases, for example Zika or dengue, include using larvicide and/or adulticide, either through large-scale application by truck or plane or through door-to-door efforts that require obtaining permission to access private property and spray yards. The efficacy of the latter strategy is highly dependent on the compliance of local residents. Here we develop a model for vector-borne disease transmission between mosquitoes and humans in a neighborhood setting, considering a network of houses connected via nearest-neighbor mosquito movement. We incorporate large-scale application of adulticide via aerial spraying through a uniform increase in vector death rates in all sites, and door-to-door application of larval source reduction and adulticide through a decrease in vector emergence rates and an increase in vector death rates in compliant sites only, where control efficacies are directly connected to real-world experimentally measurable control parameters, application frequencies, and control costs. To develop mechanistic insight into the influence of vector motion and compliance clustering on disease controllability, we determine the basic reproduction number R0 for the system, provide analytic results for the extreme cases of no mosquito movement, infinite hopping rates, and utilize degenerate perturbation theory for the case of slow but non-zero hopping rates. We then determine the application frequencies required for each strategy (alone and combined) in order to reduce R0 to unity, along with the associated costs. Cost-optimal strategies are found to depend strongly on mosquito hopping rates, levels of door-to-door compliance, and spatial clustering of compliant houses, and can include aerial spray alone, door-to-door treatment alone, or a combination of both. The optimization scheme developed here provides a flexible tool for disease management planners which translates modeling results into actionable control advice adaptable to system-specific details.Simons Foundation (426126)University of Kansas General Research Grant (2301-2105075)Department of Defense SERDP contract (W912HQ-16-C-0054
    corecore