22 research outputs found
Needs assessment of gossamer structures in communications platform end-of-life disposal
The use of a gossamer structure is considered in application to end-of-life disposal of communications platforms. A wide-ranging survey of end-of-life disposal techniques and strategies is presented for comparison against a gossamer structure prior to a down-selection of viable competing techniques; solar sailing, high and low-thrust propulsion, and electrodynamic tethers. A parametric comparison of the down-selection competing techniques is presented where it was found that exploiting solar radiation pressure on the gossamer structure was of limited value. In general terms, it was found that if a spacecraft propulsion system remains functioning at the end-of-life then this will likely provide the most efficient means of re-orbiting, especially when the propulsion system is only used to lower the orbit to a point where atmospheric drag will cause the orbit to decay within the required timeframe. Atmospheric drag augmentation was found to be of most benefit for end-of-life disposal when an entirely passive means is required, allowing the device to act as a âfail-safeâ, which if the spacecraft suffers a catastrophic failure would activate. The use of an atmospheric drag augmentation system is applicable to only low and medium mass spacecraft, or spacecraft that are unlikely to survive atmospheric re-entry, hence minimizing risk to human life
Space mission applications of high area-to-mass-ratio orbital dynamics
High area-to-mass-ratio spacecraft experience a signifcant perturbation due to surface forces, such as solar radiation pressure and aerodynamic drag. Hence, their orbits do not evolve in the manner of traditional satellites. They undergo strong changes in eccentricity and argument of pericentre due to solar radiation pressure, and in semi-major axis due to aerodynamic drag. These effects can be exploited for a number of applications, providing solutions to existing problems for space mission design. In this thesis an analytical Hamiltonian model of the orbital evolution of high area-to-massratio objects is used to identify potential mission applications on decreasing length-scale. These applications are then investigated using numerical methods and validated against high-precision orbit propagations. On the metre-scale, applications for small satellites, of 100 kg mass or less, are developed. Firstly, a passive orbit manoeuvre from geostationary transfer orbit to low Earth orbit is investigated. This method has the potential to enable a new range of piggy-back launches for small satellites. Using the same insights, the strategy of solar radiation pressure augmented deorbiting is presented. The deorbiting method can enable passive end-of-life removal from very high altitude orbits. On the millimetre-scale, an orbit control method for so-called SpaceChips is developed. The method uses electrochromic coatings to allow the SpaceChip to alter its optical properties and thus modulate the perturbation due to solar radiation pressure. Different control algorithms are discussed and evaluated. Finally, on the micrometre-scale, a dispersion strategy for a planetary dust ring extracted from a captured asteroid is presented. The long-lived dust ring is designed to reduce the solar input to the global climate system and mitigate global warming. Heliotropic orbits are used as a means of passively controlling the ring.High area-to-mass-ratio spacecraft experience a signifcant perturbation due to surface forces, such as solar radiation pressure and aerodynamic drag. Hence, their orbits do not evolve in the manner of traditional satellites. They undergo strong changes in eccentricity and argument of pericentre due to solar radiation pressure, and in semi-major axis due to aerodynamic drag. These effects can be exploited for a number of applications, providing solutions to existing problems for space mission design. In this thesis an analytical Hamiltonian model of the orbital evolution of high area-to-massratio objects is used to identify potential mission applications on decreasing length-scale. These applications are then investigated using numerical methods and validated against high-precision orbit propagations. On the metre-scale, applications for small satellites, of 100 kg mass or less, are developed. Firstly, a passive orbit manoeuvre from geostationary transfer orbit to low Earth orbit is investigated. This method has the potential to enable a new range of piggy-back launches for small satellites. Using the same insights, the strategy of solar radiation pressure augmented deorbiting is presented. The deorbiting method can enable passive end-of-life removal from very high altitude orbits. On the millimetre-scale, an orbit control method for so-called SpaceChips is developed. The method uses electrochromic coatings to allow the SpaceChip to alter its optical properties and thus modulate the perturbation due to solar radiation pressure. Different control algorithms are discussed and evaluated. Finally, on the micrometre-scale, a dispersion strategy for a planetary dust ring extracted from a captured asteroid is presented. The long-lived dust ring is designed to reduce the solar input to the global climate system and mitigate global warming. Heliotropic orbits are used as a means of passively controlling the ring
Geo-engineering using dust grains in heliotropic elliptical orbits
This paper examines the concept of a Saturn-like Earth ring comprised of dust grains to offset global warming. A new family of non-Keplerian periodic orbits, under the effects of solar radiation pressure and the Earthâs oblateness J2 perturbation, is selected to increase the lifetime of the passive cloud of particles and, thus, increase the efficiency of this geo-engineering strategy. An analytical model is used to predict the evolution of the dust due to solar-radiation pressure and the J2 effect. The attenuation of the solar radiation can then be calculated from the ring model. In comparison to circular orbits, eccentric orbits yield a more stable environment for small grain sizes and therefore achieve higher efficiencies when the orbital decay of the material is considered. Moreover, the special orbital dynamics experienced by high area-to-mass ratio objects, influenced by solar radiation pressure and the J2 effect, ensure the ring will maintain a permanent heliotropic shape, with dust spending the largest portion of time on the Sun facing side. It is envisaged that small dust grains can be released with an initial Îv to enter an eccentric orbit with Sun-facing apogee. Finally, an estimate of 5.94x1011 kg is computed as the total mass required to offset the effects of global warming
Patientâcentered digital biomarkers for allergic respiratory diseases and asthma: The ARIAâEAACI approach â ARIAâEAACI Task Force Report
Biomarkers for the diagnosis, treatment and follow-up of patients with rhinitis and/ or asthma are urgently needed. Although some biologic biomarkers exist in specialist care for asthma, they cannot be largely used in primary care. There are no validated biomarkers in rhinitis or allergen immunotherapy (AIT) that can be used in clinical practice. The digital transformation of health and health care (including mHealth) places the patient at the center of the health system and is likely to optimize the practice of allergy. Allergic Rhinitis and its Impact on Asthma (ARIA) and EAACI (European Academy of Allergy and Clinical Immunology) developed a Task Force aimed at proposing patient-reported outcome measures (PROMs) as digital biomarkers that can be easily used for different purposes in rhinitis and asthma. It first defined control digital biomarkers that should make a bridge between clinical practice, randomized controlled trials, observational real-life studies and allergen challenges. Using the MASK-air app as a model, a daily electronic combined symptom-medication score for allergic diseases (CSMS) or for asthma (e-DASTHMA), combined with a monthly control questionnaire, was embedded in a strategy similar to the diabetes approach for disease control. To mimic real-life, it secondly proposed quality-of- life digital biomarkers including daily EQ-5D visual analogue scales and the bi-weekly RhinAsthma Patient Perspective (RAAP). The potential implications for the management of allergic respiratory diseases were proposed.info:eu-repo/semantics/publishedVersio
Rhinitis associated with asthma is distinct from rhinitis alone: TARIAâMeDALL hypothesis
Asthma, rhinitis, and atopic dermatitis (AD) are interrelated clinical phenotypes that partly overlap in the human interactome. The concept of âone-airway-one-disease,â coined over 20âyears ago, is a simplistic approach of the links between upper- and lower-airway allergic diseases. With new data, it is time to reassess the concept. This article reviews (i) the clinical observations that led to Allergic Rhinitis and its Impact on Asthma (ARIA), (ii) new insights into polysensitization and multimorbidity, (iii) advances in mHealth for novel phenotype definitions, (iv) confirmation in canonical epidemiologic studies, (v) genomic findings, (vi) treatment approaches, and (vii) novel concepts on the onset of rhinitis and multimorbidity. One recent concept, bringing together upper- and lower-airway allergic diseases with skin, gut, and neuropsychiatric multimorbidities, is the âEpithelial Barrier Hypothesis.â This review determined that the âone-airway-one-diseaseâ concept does not always hold true and that several phenotypes of disease can be defined. These phenotypes include an extreme âallergicâ (asthma) phenotype combining asthma, rhinitis, and conjunctivitis.info:eu-repo/semantics/publishedVersio
ARIA digital anamorphosis : Digital transformation of health and care in airway diseases from research to practice
Digital anamorphosis is used to define a distorted image of health and care that may be viewed correctly using digital tools and strategies. MASK digital anamorphosis represents the process used by MASK to develop the digital transformation of health and care in rhinitis. It strengthens the ARIA change management strategy in the prevention and management of airway disease. The MASK strategy is based on validated digital tools. Using the MASK digital tool and the CARAT online enhanced clinical framework, solutions for practical steps of digital enhancement of care are proposed.Peer reviewe
Cabbage and fermented vegetables : From death rate heterogeneity in countries to candidates for mitigation strategies of severe COVID-19
Large differences in COVID-19 death rates exist between countries and between regions of the same country. Some very low death rate countries such as Eastern Asia, Central Europe, or the Balkans have a common feature of eating large quantities of fermented foods. Although biases exist when examining ecological studies, fermented vegetables or cabbage have been associated with low death rates in European countries. SARS-CoV-2 binds to its receptor, the angiotensin-converting enzyme 2 (ACE2). As a result of SARS-CoV-2 binding, ACE2 downregulation enhances the angiotensin II receptor type 1 (AT(1)R) axis associated with oxidative stress. This leads to insulin resistance as well as lung and endothelial damage, two severe outcomes of COVID-19. The nuclear factor (erythroid-derived 2)-like 2 (Nrf2) is the most potent antioxidant in humans and can block in particular the AT(1)R axis. Cabbage contains precursors of sulforaphane, the most active natural activator of Nrf2. Fermented vegetables contain many lactobacilli, which are also potent Nrf2 activators. Three examples are: kimchi in Korea, westernized foods, and the slum paradox. It is proposed that fermented cabbage is a proof-of-concept of dietary manipulations that may enhance Nrf2-associated antioxidant effects, helpful in mitigating COVID-19 severity.Peer reviewe
Nrf2-interacting nutrients and COVID-19 : time for research to develop adaptation strategies
There are large between- and within-country variations in COVID-19 death rates. Some very low death rate settings such as Eastern Asia, Central Europe, the Balkans and Africa have a common feature of eating large quantities of fermented foods whose intake is associated with the activation of the Nrf2 (Nuclear factor (erythroid-derived 2)-like 2) anti-oxidant transcription factor. There are many Nrf2-interacting nutrients (berberine, curcumin, epigallocatechin gallate, genistein, quercetin, resveratrol, sulforaphane) that all act similarly to reduce insulin resistance, endothelial damage, lung injury and cytokine storm. They also act on the same mechanisms (mTOR: Mammalian target of rapamycin, PPAR gamma:Peroxisome proliferator-activated receptor, NF kappa B: Nuclear factor kappa B, ERK: Extracellular signal-regulated kinases and eIF2 alpha:Elongation initiation factor 2 alpha). They may as a result be important in mitigating the severity of COVID-19, acting through the endoplasmic reticulum stress or ACE-Angiotensin-II-AT(1)R axis (AT(1)R) pathway. Many Nrf2-interacting nutrients are also interacting with TRPA1 and/or TRPV1. Interestingly, geographical areas with very low COVID-19 mortality are those with the lowest prevalence of obesity (Sub-Saharan Africa and Asia). It is tempting to propose that Nrf2-interacting foods and nutrients can re-balance insulin resistance and have a significant effect on COVID-19 severity. It is therefore possible that the intake of these foods may restore an optimal natural balance for the Nrf2 pathway and may be of interest in the mitigation of COVID-19 severity
Convalescent plasma in patients admitted to hospital with COVID-19 (RECOVERY): a randomised controlled, open-label, platform trial
SummaryBackground Azithromycin has been proposed as a treatment for COVID-19 on the basis of its immunomodulatoryactions. We aimed to evaluate the safety and efficacy of azithromycin in patients admitted to hospital with COVID-19.Methods In this randomised, controlled, open-label, adaptive platform trial (Randomised Evaluation of COVID-19Therapy [RECOVERY]), several possible treatments were compared with usual care in patients admitted to hospitalwith COVID-19 in the UK. The trial is underway at 176 hospitals in the UK. Eligible and consenting patients wererandomly allocated to either usual standard of care alone or usual standard of care plus azithromycin 500 mg once perday by mouth or intravenously for 10 days or until discharge (or allocation to one of the other RECOVERY treatmentgroups). Patients were assigned via web-based simple (unstratified) randomisation with allocation concealment andwere twice as likely to be randomly assigned to usual care than to any of the active treatment groups. Participants andlocal study staff were not masked to the allocated treatment, but all others involved in the trial were masked to theoutcome data during the trial. The primary outcome was 28-day all-cause mortality, assessed in the intention-to-treatpopulation. The trial is registered with ISRCTN, 50189673, and ClinicalTrials.gov, NCT04381936.Findings Between April 7 and Nov 27, 2020, of 16 442 patients enrolled in the RECOVERY trial, 9433 (57%) wereeligible and 7763 were included in the assessment of azithromycin. The mean age of these study participants was65·3 years (SD 15·7) and approximately a third were women (2944 [38%] of 7763). 2582 patients were randomlyallocated to receive azithromycin and 5181 patients were randomly allocated to usual care alone. Overall,561 (22%) patients allocated to azithromycin and 1162 (22%) patients allocated to usual care died within 28 days(rate ratio 0·97, 95% CI 0·87â1·07; p=0·50). No significant difference was seen in duration of hospital stay (median10 days [IQR 5 to >28] vs 11 days [5 to >28]) or the proportion of patients discharged from hospital alive within 28 days(rate ratio 1·04, 95% CI 0·98â1·10; p=0·19). Among those not on invasive mechanical ventilation at baseline, nosignificant difference was seen in the proportion meeting the composite endpoint of invasive mechanical ventilationor death (risk ratio 0·95, 95% CI 0·87â1·03; p=0·24).Interpretation In patients admitted to hospital with COVID-19, azithromycin did not improve survival or otherprespecified clinical outcomes. Azithromycin use in patients admitted to hospital with COVID-19 should be restrictedto patients in whom there is a clear antimicrobial indication
ARIA digital anamorphosis: Digital transformation of health and care in airway diseases from research to practice
Digital anamorphosis is used to define a distorted image of health and care that may be viewed correctly using digital tools and strategies. MASK digital anamorphosis represents the process used by MASK to develop the digital transformation of health and care in rhinitis. It strengthens the ARIA change management strategy in the prevention and management of airway disease. The MASK strategy is based on validated digital tools. Using the MASK digital tool and the CARAT online enhanced clinical framework, solutions for practical steps of digital enhancement of care are proposed