27 research outputs found

    ExoClock Project III: 450 new exoplanet ephemerides from ground and space observations

    Get PDF
    The ExoClock project has been created with the aim of increasing the efficiency of the Ariel mission. It will achieve this by continuously monitoring and updating the ephemerides of Ariel candidates over an extended period, in order to produce a consistent catalogue of reliable and precise ephemerides. This work presents a homogenous catalogue of updated ephemerides for 450 planets, generated by the integration of \sim18000 data points from multiple sources. These sources include observations from ground-based telescopes (ExoClock network and ETD), mid-time values from the literature and light-curves from space telescopes (Kepler/K2 and TESS). With all the above, we manage to collect observations for half of the post-discovery years (median), with data that have a median uncertainty less than one minute. In comparison with literature, the ephemerides generated by the project are more precise and less biased. More than 40\% of the initial literature ephemerides had to be updated to reach the goals of the project, as they were either of low precision or drifting. Moreover, the integrated approach of the project enables both the monitoring of the majority of the Ariel candidates (95\%), and also the identification of missing data. The dedicated ExoClock network effectively supports this task by contributing additional observations when a gap in the data is identified. These results highlight the need for continuous monitoring to increase the observing coverage of the candidate planets. Finally, the extended observing coverage of planets allows us to detect trends (TTVs - Transit Timing Variations) for a sample of 19 planets. All products, data, and codes used in this work are open and accessible to the wider scientific community.Comment: Recommended for publication to ApJS (reviewer's comments implemented). Main body: 13 pages, total: 77 pages, 7 figures, 7 tables. Data available at http://doi.org/10.17605/OSF.IO/P298

    Turbulente Diffusion und widerstandsminderung in Rohrströmungen

    No full text

    Drag Reduction of Bacterial Cellulose Suspensions

    Get PDF
    Drag reduction due to bacterial cellulose suspensions with small environmental loading was investigated. Experiments were carried out by measuring the pressure drop in pipe flow. It was found that bacterial cellulose suspensions give rise to drag reduction in the turbulent flow range. We observed a maximum drag reduction ratio of 11% and found that it increased with the concentration of the bacterial cellulose suspension. However, the drag reduction effect decreased in the presence of mechanical shear

    Differential impact of diesel particle composition on pro-allergic dendritic cell function.

    No full text
    Diesel exhaust particles (DEP) were described as potent adjuvant in the induction and maintenance of allergic diseases, suggesting that they might play a role in the increase of allergic diseases in the industrialized countries. However, the cellular basis by which these particles enhance allergic immune responses is still a matter of debate. Thus, we exposed immature murine bone marrow-derived dendritic cells (BMDC) to different particles or particle-associated organic compounds in the absence or presence of the maturation stimuli lipopolysaccharide (LPS) and analyzed the cellular maturation, viability, and cytokine production. Furthermore, we monitored the functionality of particle-exposed BMDC to suppress B cell isotype switching to immunoglobulin (Ig) E. Only highly polluted DEP (standard reference material 1650a [SRM1650a]) but not particle-associated organic compounds or less polluted DEP from modern diesel engines were able to modulate the dendritic cell phenotype. SRM1650a particles significantly suppressed LPS-induced IL-12p70 production in murine BMDC, whereas cell-surface marker expression was not altered. Furthermore, SRM1650a-exposed immature BMDC lost the ability to suppress IgE isotype switch in B cells. This study revealed that highly polluted DEP not only interfere with dendritic cell maturation but also additionally with dendritic cell function, thus suggesting a role in T(h)2 immune deviation
    corecore