64 research outputs found

    Automated Speckle Interferometry of Known Binaries

    Full text link
    Astronomers have been measuring the separations and position angles between the two components of binary stars since William Herschel began his observations in 1781. In 1970, Anton Labeyrie pioneered a method, speckle interferometry, that overcomes the usual resolution limits induced by atmospheric turbulence by taking hundreds or thousands of short exposures and reducing them in Fourier space. Our 2022 automation of speckle interferometry allowed us to use a fully robotic 1.0-meter PlaneWave Instruments telescope, located at the El Sauce Observatory in the Atacama Desert of Chile, to obtain observations of many known binaries with established orbits. The long-term objective of these observations is to establish the precision, accuracy, and limitations of this telescope's automated speckle interferometry measurements. This paper provides an early overview of the Known Binaries Project and provide example results on a small-separation (0.27") binary, WDS 12274-2843 B 228

    Relationship Between the Thermodynamic Parameters, Structure, and Anticorrosion Properties of Al-Zr-Ni-Fe-Y Alloys

    Get PDF
    The influence of the chemical composition on the crystallization process, amorphous phase formation, and the anticorrosion properties of Al-Zr-Ni-Fe-Y alloys are presented. To reduce the number of experiments, a thermodynamic approach was applied in which the entropy and Gibbs free energy of representative alloys were optimized. The low glass-forming ability of Al-Zr-Ni-Fe-Y alloy systems was related to the crystallization of the Al3Zr phase from the melt. The structural analysis showed that phases containing Ni and Fe, such as Al19Ni5Y3, Al10Fe2Y, and Al23Ni6Y4, played a key role in the formation of amorphous alloys. According to this, the simultaneous addition of Ni/Fe and Y is important to prevent the crystallization of Al-based alloys in the melt. The formation of an amorphous phase in Al80Zr5Ni5Fe5Y5 alloys and the complete amorphization of Al85Ni5Fe5Y5 alloys were responsible for the high corrosion resistance compared with fully crystalline alloys. Moreover, the addition of Y had a significant impact on the anticorrosion properties. The XPS results showed that the alloys tended to form a passive Al2O3 and Y2O3 layer on the surface

    ExoClock Project. III. 450 New Exoplanet Ephemerides from Ground and Space Observations

    Get PDF
    The ExoClock project has been created to increase the efficiency of the Ariel mission. It will achieve this by continuously monitoring and updating the ephemerides of Ariel candidates, in order to produce a consistent catalog of reliable and precise ephemerides. This work presents a homogenous catalog of updated ephemerides for 450 planets, generated by the integration of ∼18,000 data points from multiple sources. These sources include observations from ground-based telescopes (the ExoClock network and the Exoplanet Transit Database), midtime values from the literature, and light curves from space telescopes (Kepler, K2, and TESS). With all the above, we manage to collect observations for half of the postdiscovery years (median), with data that have a median uncertainty less than 1 minute. In comparison with the literature, the ephemerides generated by the project are more precise and less biased. More than 40% of the initial literature ephemerides had to be updated to reach the goals of the project, as they were either of low precision or drifting. Moreover, the integrated approach of the project enables both the monitoring of the majority of the Ariel candidates (95%), and also the identification of missing data. These results highlight the need for continuous monitoring to increase the observing coverage of the candidate planets. Finally, the extended observing coverage of planets allows us to detect trends (transit-timing variations) for a sample of 19 planets. All the products, data, and codes used in this work are open and accessible to the wider scientific community

    ExoClock Project III: 450 new exoplanet ephemerides from ground and space observations

    Get PDF
    The ExoClock project has been created with the aim of increasing the efficiency of the Ariel mission. It will achieve this by continuously monitoring and updating the ephemerides of Ariel candidates over an extended period, in order to produce a consistent catalogue of reliable and precise ephemerides. This work presents a homogenous catalogue of updated ephemerides for 450 planets, generated by the integration of \sim18000 data points from multiple sources. These sources include observations from ground-based telescopes (ExoClock network and ETD), mid-time values from the literature and light-curves from space telescopes (Kepler/K2 and TESS). With all the above, we manage to collect observations for half of the post-discovery years (median), with data that have a median uncertainty less than one minute. In comparison with literature, the ephemerides generated by the project are more precise and less biased. More than 40\% of the initial literature ephemerides had to be updated to reach the goals of the project, as they were either of low precision or drifting. Moreover, the integrated approach of the project enables both the monitoring of the majority of the Ariel candidates (95\%), and also the identification of missing data. The dedicated ExoClock network effectively supports this task by contributing additional observations when a gap in the data is identified. These results highlight the need for continuous monitoring to increase the observing coverage of the candidate planets. Finally, the extended observing coverage of planets allows us to detect trends (TTVs - Transit Timing Variations) for a sample of 19 planets. All products, data, and codes used in this work are open and accessible to the wider scientific community.Comment: Recommended for publication to ApJS (reviewer's comments implemented). Main body: 13 pages, total: 77 pages, 7 figures, 7 tables. Data available at http://doi.org/10.17605/OSF.IO/P298

    Über die Elektronenausfällung am Frühen Morgen Während Polarer Teilstürme

    No full text
    corecore