151 research outputs found

    Cruciform extrusion propensity of human translocation-mediating palindromic AT-rich repeats

    Get PDF
    There is an emerging consensus that secondary structures of DNA have the potential for genomic instability. Palindromic AT-rich repeats (PATRRs) are a characteristic sequence identified at each breakpoint of the recurrent constitutional t(11;22) and t(17;22) translocations in humans, named PATRR22 (∼600 bp), PATRR11 (∼450 bp) and PATRR17 (∼190 bp). The secondary structure-forming propensity in vitro and the instability in vivo have been experimentally evaluated for various PATRRs that differ regarding their size and symmetry. At physiological ionic strength, a cruciform structure is most frequently observed for the symmetric PATRR22, less often for the symmetric PATRR11, but not for the other PATRRs. In wild-type E. coli, only these two PATRRs undergo extensive instability, consistent with the relatively high incidence of the t(11;22) in humans. The resultant deletions are putatively mediated by central cleavage by the structure-specific endonuclease SbcCD, indicating the possibility of a cruciform conformation in vivo. Insertion of a short spacer at the centre of the PATRR22 greatly reduces both its cruciform extrusion in vitro and instability in vivo. Taken together, cruciform extrusion propensity depends on the length and central symmetry of the PATRR, and is likely to determine the instability that leads to recurrent translocations in humans

    Congenital nystagmus in a [46,XX/45,X] Mosaic woman from a damily with X-linked congenital nystagmus

    Full text link
    No Abstract.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/38258/1/1320430531_ftp.pd

    22q11.2 deletion syndrome

    Get PDF
    22q11.2 deletion syndrome (22q11.2DS) is the most common chromosomal microdeletion disorder, estimated to result mainly from de novo non-homologous meiotic recombination events occurring in approximately 1 in every 1,000 fetuses. The first description in the English language of the constellation of findings now known to be due to this chromosomal difference was made in the 1960s in children with DiGeorge syndrome, who presented with the clinical triad of immunodeficiency, hypoparathyroidism and congenital heart disease. The syndrome is now known to have a heterogeneous presentation that includes multiple additional congenital anomalies and later-onset conditions, such as palatal, gastrointestinal and renal abnormalities, autoimmune disease, variable cognitive delays, behavioural phenotypes and psychiatric illness - all far extending the original description of DiGeorge syndrome. Management requires a multidisciplinary approach involving paediatrics, general medicine, surgery, psychiatry, psychology, interventional therapies (physical, occupational, speech, language and behavioural) and genetic counselling. Although common, lack of recognition of the condition and/or lack of familiarity with genetic testing methods, together with the wide variability of clinical presentation, delays diagnosis. Early diagnosis, preferably prenatally or neonatally, could improve outcomes, thus stressing the importance of universal screening. Equally important, 22q11.2DS has become a model for understanding rare and frequent congenital anomalies, medical conditions, psychiatric and developmental disorders, and may provide a platform to better understand these disorders while affording opportunities for translational strategies across the lifespan for both patients with 22q11.2DS and those with these associated features in the general population

    DNA secondary structure is influenced by genetic variation and alters susceptibility to de novo translocation

    Get PDF
    <p>Abstract</p> <p><b>Background</b></p> <p>Cumulative evidence suggests that DNA secondary structures impact DNA replication, transcription and genomic rearrangements. One of the best studied examples is the recurrent constitutional t(11;22) in humans that is mediated by potentially cruciform-forming sequences at the breakpoints, palindromic AT-rich repeats (PATRRs). We previously demonstrated that polymorphisms of PATRR sequences affect the frequency of <it>de novo </it>t(11;22)s in sperm samples from normal healthy males. These studies were designed to determine whether PATRR polymorphisms affect DNA secondary structure, thus leading to variation in translocation frequency.</p> <p><b>Methods</b></p> <p>We studied the potential for DNA cruciform formation for several PATRR11 polymorphic alleles using mobility shift analysis in gel electrophoresis as well as by direct visualization of the DNA by atomic force microscopy. The structural data for various alleles were compared with the frequency of <it>de novo </it>t(11;22)s the allele produced.</p> <p><b>Results</b></p> <p>The data indicate that the propensity for DNA cruciform structure of each polymorphic allele correlates with the frequency of <it>de novo </it>t(11;22)s produced (r = 0.77, <it>P </it>= 0.01).</p> <p><b>Conclusions</b></p> <p>Although indirect, our results strongly suggest that the PATRR adopts unstable cruciform structures during spermatogenesis that act as translocation hotspots in humans.</p

    A dynamic database of microarray-characterized cell lines with various cytogenetic and genomic backgrounds

    Get PDF
    The Human Genetic Cell Repository sponsored by the National Institute of General Medical Sciences (NIGMS) contains more than 11,000 cell lines and DNA samples collected from numerous individuals. All of these cell lines and DNA samples are categorized into several collections representing a variety of disease states, chromosomal abnormalities, heritable diseases, distinct human populations, and apparently healthy individuals. Many of these cell lines have previously been studied with detailed conventional cytogenetic analyses, including G-banded karyotyping and fluorescence in situ hybridization. This work was conducted by investigators at submitting institutions and scientists at Coriell Institute for Medical Research, where the NIGMS Repository is hosted. Recently, approximately 900 cell lines, mostly chosen from the Chromosomal Aberrations and Heritable Diseases collections, have been further characterized in detail at the Coriell Institute using the Affymetrix Genome-Wide Human SNP Array 6.0 to detect copy number variations and copy number neutral loss of heterozygosity. A database containing detailed cytogenetic and genomic information for these cell lines has been constructed and is freely available through several sources, such as the NIGMS Repository website and the University of California at Santa Cruz Genome Browser. As additional cell lines are analyzed and subsequently added into it, the database will be maintained dynamically

    Frequency and impact of suboptimal immune recovery on first-line antiretroviral therapy within the International Epidemiologic Databases to Evaluate AIDS in East Africa

    Get PDF
    OBJECTIVE: To describe patterns of suboptimal immune recovery (SO-IR) and associated HIV-related-illnesses during the first 5 years following first-line antiretroviral therapy (ART) initiation across seven ART sites in East Africa. DESIGN: Retrospective analysis of data from seven ART clinical sites (three Uganda, two Kenya and two Tanzania). METHODS: SO-IR was described by proportions of ART-treated adults with CD4 cell counts less than 200, less than 350 and less than 500 cells/μl. Kaplan-Meier survival analysis techniques were used to assess predictors of SO-IR, and incident rates of HIV-related illnesses at CD4 cell counts less than 200, 200-350, 351-499, and >500 cells/μl, respectively. RESULTS: Overall 80 843 adults initiated non-nucleoside reverse transcriptase inhibitor-based first-line ART; 65% were women and median CD4 cell count was 126 [interquartile range (IQR), 52-202] cells/μl. Cumulative probability of SO-IR <200 cells/μl, <350 cells/μl and <500 cells/μl, after 5 years, was 11, 38 and 63%, respectively. Incidence of HIV-related illnesses was higher among those with CD4 cell counts less than 200 and 200-350 cells/μl, than those who achieved CD4 counts above these thresholds. The most common events, at CD4 < 200 cells/μl, were pulmonary tuberculosis [incident rate 15.98 (15.47-16.51)/100 person-years at risk (PYAR), oral candidiasis [incident rate 12.5 (12.03-12.94)] and herpes zoster [incident rate 6.30 (5.99-6.64)] events/100 PYAR. With attainment of a CD4 cell count level 200-350 cells/μl, there was a substantial reduction in events/100 PYAR - by 91% to 1.45 (1.29-1.63) for TB, by 94% to 0.75 (0.64-0.89) for oral candidiasis, by 84% to 0.99 (0.86-1.14) for Herpes Zoster, and by 78% to 1.22 (1.07-1.39) for chronic diarrhea. The incidence of all events decreased further with CD4 counts above these thresholds. CONCLUSION: Around 40% of adults initiated on ART have suboptimal immune recovery with CD4 counts <350 cells/μl after five years. Such patients will require closer monitoring for both HIV-related and non-HIV-related clinical events

    Frequency of 22q11 deletions in patients with conotruncal defects

    Get PDF
    AbstractObjectives. This study was designed to determine the frequency of 22q11 deletions in a large, prospectively ascertained sample of patients with conotruncal defects and to evaluate the deletion frequency when additional cardiac findings are also considered.Background. Chromosome 22q11 deletions are present in the majority of patients with DiGeorge, velocardiofacial and conotruncal anomaly face syndromes in which conotruncal defects are a cardinal feature. Previous studies suggest that a substantial number of patients with congenital heart disease have a 22q11 deletion.Methods. Two hundred fifty-one patients with conotruncal defects were prospectively enrolled into the study and screened for the presence of a 22q11 deletion.Results. Deletions were found in 50.0% with interrupted aortic arch (IAA), 34.5% of patients with truncus arteriosus (TA), and 15.9% with tetralogy of Fallot (TOF). Two of 6 patients with a posterior malalignment type ventricular septal defect (PMVSD) and only 1 of 20 patients with double outlet right ventricle were found to have a 22q11 deletion. None of the 45 patients with transposition of the great arteries had a deletion. The frequency of 22q11 deletions was higher in patients with anomalies of the pulmonary arteries, aortic arch or its major branches as compared to patients with a normal left aortic arch regardless of intracardiac anatomy.Conclusions. A substantial proportion of patients with IAA, TA, TOF and PMVSD have a deletion of chromosome 22q11. Deletions are more common in patients with aortic arch or vessel anomalies. These results begin to define guidelines for deletion screening of patients with conotruncal defects

    A radiation hybrid map of the region on human chromosome 22 containing the neurofibromatosis type 2 locus

    Full text link
    We describe a high-resolution radiation hybrid map of the region on human chromosome 22 containing the neurofibromatosis type 2 (NF2) gene. Eighty-five hamster--human somatic cell hybrids generated by X-irradiation and cell fusion were used to generate the radiation hybrid map. The presence or absence of 18 human chromosome 22-specific markers was determined in each hybrid by using Southern blot hybridization. Sixteen of the 18 markers were distinguishable by X-ray breakage in the radiation hybrids. Analysis of these data using two different mathematical models and two different statistical methods resulted in a single framework map consisting of 8 markers ordered with odds greater than 1000:1. The remaining nonframework markers were all localized to regions consisting of two adjoining intervals on the framework map with odds greater than 1000:1. Based on the RH map, the NF2 region of chromosome 22, defined by the flanking markers D22S1 and D22S28, is estimated to span a physical distance of approximately 6 Mb and is the most likely location for 9 of the 18 markers studied: D22S33, D22S41, D22S42, D22S46, D22S56, LIF, D22S37, D22S44, and D22S15.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/29761/1/0000099.pd

    Disrupted anatomic networks in the 22q11.2 deletion syndrome

    Get PDF
    AbstractThe 22q11.2 deletion syndrome (22q11DS) is an uncommon genetic disorder with an increased risk of psychosis. Although the neural substrates of psychosis and schizophrenia are not well understood, aberrations in cortical networks represent intriguing potential mechanisms. Investigations of anatomic networks within 22q11DS are sparse. We investigated group differences in anatomic network structure in 48 individuals with 22q11DS and 370 typically developing controls by analyzing covariance patterns in cortical thickness among 68 regions of interest using graph theoretical models. Subjects with 22q11DS had less robust geographic organization relative to the control group, particularly in the occipital and parietal lobes. Multiple global graph theoretical statistics were decreased in 22q11DS. These results are consistent with prior studies demonstrating decreased connectivity in 22q11DS using other neuroimaging methodologies
    corecore