25 research outputs found

    Assessment of smoking status based on cotinine levels in nasal lavage fluid

    Get PDF
    Cotinine is a principal metabolite of nicotine with a substantially longer half-life, and cotinine levels in saliva, urine or serum are widely used to validate self-reported smoking status. The nasal cavity and olfactory system are directly exposed to tobacco smoke in smokers and in non-smokers who live with or work around smokers. However, despite the potential for a direct impact of tobacco smoke on the nasal epithelium and olfactory neurons, no prior studies have assessed cotinine levels in nasal mucus. We sought to determine whether cotinine levels in nasal lavage fluid (NLF) would provide a reasonable estimate of smoke exposure. We assayed cotinine using a competitive immunoassay in NLF from 23 smokers, 10 non-smokers exposed to tobacco smoke (ETS) and 60 non-smokers who did not report smoke exposure. NLF cotinine levels were significantly higher in smokers than in non-smokers, regardless of their exposure to ambient tobacco smoke. Cotinine levels in this small group of exposed non-smokers were not significantly different than those of non-exposed non-smokers. A cutoff of 1 ng/ml provided a sensitivity of 91% and a specificity of 99% for smoking status in this sample. Data were consistent with self-reported smoking status, and a cutoff of 1.0 ng/ml NLF cotinine may be used to classify smoking status. While saliva is the most easily obtained body fluid, NLF can be used to provide an objective and precise indication of smoking status and more directly reflects smoke exposure in the nasal and olfactory mucosa

    Nasal airflow and odorant transport modeling in patients with chronic rhinosimusitis

    Get PDF
    Poster presentation at Association for Chemoreception Sciences (ACHEMS) in Sarasota Florida April 25-29, 2007. Introduction: Our on-going clinical project aims to quantify the conductive mechanism contributing toolfactory loss in chronic rhinosinusitis (CRS) patients, in addition to other inflammatory causes(see Yee, et al, 200 and Feng, et al, 203). CRS, a common disease affecting 32 millionAmericans annually, is reportedly associated with at least 15% of all olfactory losses. Airwayconstriction as a result of inflammation or the presence of polyps may limit odor access to thereceptor sites and lead to olfactory dysfunction. As yet, the functional impact of various nasalobstructions as sequelae to CRS and their treatment outcomes have not been successfullyindexed by any existing clinical tools, such as acoustic rhinometry, or rhinomanometry.Computational fluid dynamics (CFD) techniques have shown great promises to simulate nasalairflow and predict odorant delivery rates to the olfactory epithelium based on CT scans. In thisreport, we provide additional support for the hypothesis that the CFD calculation is a betterpredictor of olfactory sensitivity among CRS patients than are conventional methods

    Sour Ageusia in Two Individuals Implicates Ion Channels of the ASIC and PKD Families in Human Sour Taste Perception at the Anterior Tongue

    Get PDF
    BACKGROUND:The perception of sour taste in humans is incompletely understood at the receptor cell level. We report here on two patients with an acquired sour ageusia. Each patient was unresponsive to sour stimuli, but both showed normal responses to bitter, sweet, and salty stimuli. METHODS AND FINDINGS:Lingual fungiform papillae, containing taste cells, were obtained by biopsy from the two patients, and from three sour-normal individuals, and analyzed by RT-PCR. The following transcripts were undetectable in the patients, even after 50 cycles of amplification, but readily detectable in the sour-normal subjects: acid sensing ion channels (ASICs) 1a, 1beta, 2a, 2b, and 3; and polycystic kidney disease (PKD) channels PKD1L3 and PKD2L1. Patients and sour-normals expressed the taste-related phospholipase C-beta2, the delta-subunit of epithelial sodium channel (ENaC) and the bitter receptor T2R14, as well as beta-actin. Genomic analysis of one patient, using buccal tissue, did not show absence of the genes for ASIC1a and PKD2L1. Immunohistochemistry of fungiform papillae from sour-normal subjects revealed labeling of taste bud cells by antibodies to ASICs 1a and 1beta, PKD2L1, phospholipase C-beta2, and delta-ENaC. An antibody to PKD1L3 labeled tissue outside taste bud cells. CONCLUSIONS:These data suggest a role for ASICs and PKDs in human sour perception. This is the first report of sour ageusia in humans, and the very existence of such individuals ("natural knockouts") suggests a cell lineage for sour that is independent of the other taste modalities

    Search for gravitational-lensing signatures in the full third observing run of the LIGO-Virgo network

    Get PDF
    Gravitational lensing by massive objects along the line of sight to the source causes distortions of gravitational wave-signals; such distortions may reveal information about fundamental physics, cosmology and astrophysics. In this work, we have extended the search for lensing signatures to all binary black hole events from the third observing run of the LIGO--Virgo network. We search for repeated signals from strong lensing by 1) performing targeted searches for subthreshold signals, 2) calculating the degree of overlap amongst the intrinsic parameters and sky location of pairs of signals, 3) comparing the similarities of the spectrograms amongst pairs of signals, and 4) performing dual-signal Bayesian analysis that takes into account selection effects and astrophysical knowledge. We also search for distortions to the gravitational waveform caused by 1) frequency-independent phase shifts in strongly lensed images, and 2) frequency-dependent modulation of the amplitude and phase due to point masses. None of these searches yields significant evidence for lensing. Finally, we use the non-detection of gravitational-wave lensing to constrain the lensing rate based on the latest merger-rate estimates and the fraction of dark matter composed of compact objects

    Observation of gravitational waves from the coalescence of a 2.5−4.5 M⊙ compact object and a neutron star

    Get PDF

    Search for eccentric black hole coalescences during the third observing run of LIGO and Virgo

    Get PDF
    Despite the growing number of confident binary black hole coalescences observed through gravitational waves so far, the astrophysical origin of these binaries remains uncertain. Orbital eccentricity is one of the clearest tracers of binary formation channels. Identifying binary eccentricity, however, remains challenging due to the limited availability of gravitational waveforms that include effects of eccentricity. Here, we present observational results for a waveform-independent search sensitive to eccentric black hole coalescences, covering the third observing run (O3) of the LIGO and Virgo detectors. We identified no new high-significance candidates beyond those that were already identified with searches focusing on quasi-circular binaries. We determine the sensitivity of our search to high-mass (total mass M>70 M⊙) binaries covering eccentricities up to 0.3 at 15 Hz orbital frequency, and use this to compare model predictions to search results. Assuming all detections are indeed quasi-circular, for our fiducial population model, we place an upper limit for the merger rate density of high-mass binaries with eccentricities 0<e≤0.3 at 0.33 Gpc−3 yr−1 at 90\% confidence level

    Ultralight vector dark matter search using data from the KAGRA O3GK run

    Get PDF
    Among the various candidates for dark matter (DM), ultralight vector DM can be probed by laser interferometric gravitational wave detectors through the measurement of oscillating length changes in the arm cavities. In this context, KAGRA has a unique feature due to differing compositions of its mirrors, enhancing the signal of vector DM in the length change in the auxiliary channels. Here we present the result of a search for U(1)B−L gauge boson DM using the KAGRA data from auxiliary length channels during the first joint observation run together with GEO600. By applying our search pipeline, which takes into account the stochastic nature of ultralight DM, upper bounds on the coupling strength between the U(1)B−L gauge boson and ordinary matter are obtained for a range of DM masses. While our constraints are less stringent than those derived from previous experiments, this study demonstrates the applicability of our method to the lower-mass vector DM search, which is made difficult in this measurement by the short observation time compared to the auto-correlation time scale of DM

    Dual requirements for WNT10A in proliferation and KLF4-mediated differentiation underlie ectodermal dysplasia

    Get PDF
    AbstractHuman WNT10A mutations are associated with developmental tooth abnormalities and adolescent onset of a broad range of ectodermal defects. Here we show that β-catenin pathway activity and adult epithelial progenitor proliferation are reduced in the absence of WNT10A, and identify Wnt-active self-renewing stem cells in affected tissues including hair follicles, sebaceous glands, taste buds, nails and sweat ducts. Human and mouse WNT10A mutant palmoplantar and tongue epithelia also display specific differentiation defects that are mimicked by loss of the transcription factor KLF4. We find that β-catenin interacts directly with region-specific LEF/TCF factors, and with KLF4 in differentiating, but not proliferating, cells to promote expression of specialized keratins required for normal tissue structure and integrity. Our data identify WNT10A as a critical ligand controlling adult epithelial proliferation and region-specific differentiation, and suggest downstream β-catenin pathway activation as a potential approach to ameliorate regenerative defects in WNT10A patients.</jats:p
    corecore