788 research outputs found

    A novel three-colour fluorescence in situ hybridization approach for the detection of t(7;12)(q36;p13) in acute myeloid leukaemia reveals new cryptic three way translocation t(7;12;16)

    Get PDF
    © 2013 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).The t(7;12)(q36;p13) translocation is a recurrent chromosome abnormality that involves the ETV6 gene on chromosome 12 and has been identified in 20–30% of infant patients with acute myeloid leukaemia (AML). The detection of t(7;12) rearrangements relies on the use of fluorescence in situ hybridization (FISH) because this translocation is hardly visible by chromosome banding methods. Furthermore, a fusion transcript HLXB9-ETV6 is found in approximately 50% of t(7;12) cases, making the reverse transcription PCR approach not an ideal screening method. Considering the report of few cases of variant translocations harbouring a cryptic t(7;12) rearrangement, we believe that the actual incidence of this abnormality is higher than reported to date. The clinical outcome of t(7;12) patients is believed to be poor, therefore an early and accurate diagnosis is important in the clinical management and treatment. In this study, we have designed and tested a novel three-colour FISH approach that enabled us not only to confirm the presence of the t(7;12) in a number of patients studied previously, but also to identify a cryptic t(7;12) as part of a complex rearrangement. This new approach has proven to be an efficient and reliable method to be used in the diagnostic setting

    Pressure and Motion of Dry Sand -- Translation of Hagen's Paper from 1852

    Get PDF
    In a remarkable paper from 1852, Gotthilf Heinrich Ludwig Hagen measured and explained two fundamental aspects of granular matter: The first effect is the saturation of pressure with depth in a static granular system confined by silo walls -- generally known as the Janssen effect. The second part of his paper describes the dynamics observed during the flow out of the container -- today often called the Beverloo law -- and forms the foundation of the hourglass theory. The following is a translation of the original German paper from 1852.Comment: 4 pages, accepted for publication in Granular Matter, original article (German) can be found under http://www.phy.duke.edu/~msperl/Janssen

    Mouse RAD54 affects DNA double-strand break repair and sister chromatid exchange

    Get PDF
    Cells can achieve error-free repair of DNA double-strand breaks (DSBs) by homologous recombination through gene conversion with or without crossover. In contrast, an alternative homology-dependent DSB repair pathway, single-strand annealing (SSA), results in deletions. In this study, we analyzed the effect of mRAD54, a gene involved in homologous recombination, on the repair of a site-specific I-SceI-induced DSB located in a repeated DNA sequence in the genome of mouse embryonic stem cells. We used six isogenic cell lines differing solely in the orientation of the repeats. The combination of the three recombination-test substrates used discriminated among SSA, intrachromatid gene conversion, and sister chromatid gene conversion. DSB repair was most efficient for the substrate that allowed recovery of SSA events. Gene conversion with crossover, indistinguishable from long tract gene conversion, preferentially involved the sister chromatid rather than the repeat on the same chromatid. Comparing DSB repair in mRAD54 wild-type and knockout cells revealed direct evidence for a role of mRAD54 in DSB repair. The substrate measuring SSA showed an increased efficiency of DSB repair in the absence of mRAD54. The substrate measuring sister chromatid gene conversion showed a decrease in gene conversion with and without crossover. Consistent with this observation, DNA damage-induced sister chromatid exchange was reduced in mRAD54-deficient cells. Our results suggest that mRAD54 promotes gene conversion with predominant use of the sister chromatid as the repair template at the expense of error-prone SSA

    Decreased PARP and procaspase-2 protein levels are associated with cellular drug resistance in childhood acute lymphoblastic leukemia

    Get PDF
    Drug resistance in childhood acute lymphoblastic leukemia (ALL) and acute myeloid leukemia (AML) is associated with impaired ability to induce apoptosis. To elucidate causes of apoptotic defects, we studied the protein expression of Apaf-1, procaspases-2, -3, -6, -7, -8, -10, and poly(adenosine diphosphate [ADP]-ribose) polymerase (PARP) in cells from children with acute lymphoblastic leukemia (ALL; n = 43) and acute myeloid leukemia (AML; n = 10). PARP expression was present in all B-lineage samples, but absent in 4 of 15 T-lineage ALL samples and 3 of 10 AML cases, which was not caused by genomic deletions. PARP expression was a median 7-fold lower in T-lineage ALL (P < .001) and 10-fold lower in AML (P < .001) compared with B-lineage ALL. PARP expression was 4-fold lower in prednisolone, vincristine and L-asparaginase (PVA)-resistant compared with PVA-sensitive ALL patients (P < .001). Procaspase-2 expression was 3-fold lower in T-lineage ALL (P = .022) and AML (P = .014) compared with B-lineage ALL. In addition, procaspase-2 expression was 2-fold lower in PVA-resistant compared to PVA-sensitive ALL patients (P = .042). No relation between apoptotic protease-activating factor 1 (Apaf-1), procaspases-3, -6, -7, -8, -10, and drug resistance was found. In conclusion, low baseline expression of PARP and procaspase-2 is related to cellular drug resistance in childhood acute lymphoblastic leukemia

    Granular discharge and clogging for tilted hoppers

    Full text link
    We measure the flux of spherical glass beads through a hole as a systematic function of both tilt angle and hole diameter, for two different size beads. The discharge increases with hole diameter in accord with the Beverloo relation for both horizontal and vertical holes, but in the latter case with a larger small-hole cutoff. For large holes the flux decreases linearly in cosine of the tilt angle, vanishing smoothly somewhat below the angle of repose. For small holes it vanishes abruptly at a smaller angle. The conditions for zero flux are discussed in the context of a {\it clogging phase diagram} of flow state vs tilt angle and ratio of hole to grain size

    Fusion of the homeobox gene HLXB9 and the ETV6 gene in infant acute myeloid leukemias with the t(7;12)(q36;p13)

    Get PDF
    Recently, we and others reported a recurrent t(7;12)(q36;p13) found in myeloid malignancies in children < or =18 months of age and associated with a poor prognosis. Fluorescence in situ hybridization studies mapped the 12p13 breakpoint to the first intron of ETV6 and narrowed down the region of 7q36 involved. By using the sequences made public recently by the Human Genome Project, two candidate genes in 7q36 were identified: the homeobox gene HLXB9 and c7orf3, a gene with unknown function. Reverse transcription-PCR of two cases with t(7;12), using primers for c7orf3 and ETV6, was negative. However, reverse transcription-PCR for HLXB9-ETV6 demonstrated alternative splicing; the two major bands corresponded to fusion of exon 1 of HLXB9 to exons 2 and 3, respectively, of ETV6. The reciprocal ETV6-HLXB9 transcript was not detected. It remains to be elucidated if the leukemic phenotype is attributable to the formation of the HLXB9-ETV6 fusion protein, which includes the helix-loop-helix and E26 transformation-specific DNA binding domains of ETV6 or to the disruption of the normal ETV6 protein

    Asparagine synthetase expression is linked with L-asparaginase resistance in TEL-AML1-negative but not TEL-AML1-positive pediatric acute lymphoblastic leukemia

    Get PDF
    Resistance to L-asparaginase in leukemic cells may be caused by an elevated cellular expression of asparagine synthetase (AS). Previously, we reported that high AS expression did not correlate to L-asparaginase resistance in TEL-AML1-positive B-lineage acute lymphoblastic leukemia (ALL). In the present study we confirmed this finding in TEL-AML1-positive patients (n = 28) using microarrays. In contrast, 35 L-asparaginase-resistant TEL-AML1-negative B-lineage ALL patients had a significant 3.5-fold higher AS expression than 43 sensitive patients (P < .001). Using real-time quantitative polymerase chain reaction (RTQ-PCR), this finding was confirmed in an independent group of 39 TEL-AML1-negative B-lineage ALL patients (P = .03). High expression of AS was associated with poor prognosis (4-year probability of disease-free survival [pDFS] 58% +/- 11%) compared with low expression (4-year pDFS 83% +/- 7%; P = .009). We conclude that resistance to l-asparaginase and relapse risk are associated with high expression of AS in TEL-AML1-negative but not TEL-AML1-positive B-lineage ALL

    Restricted 12p amplification and RAS mutation in human germ cell tumors of the adult testis

    Get PDF
    Human testicular germ-cell tumors of young adults (TGCTs), both seminomas and nonseminomas, are characterized by 12p overrepresentation, mostly as isochromosomes, of which the biological and clinical significance is still unclear. A limited number of TGCTs has been identified with an additional high-level amplification of a restricted region of 12p including the K-RAS proto-oncogene. Here we show that the incidence of these restricted 12p amplifications is approximately 8% in primary TGCTs. Within a single cell formation of i(12p) and restricted 12p amplification is mutually exclusive. The borders of the amplicons cluster in short regions, and the amplicon was never found in the adjacent carcinoma in situ cells. Seminomas with the restricted 12p amplification virtually lacked apoptosis and the tumor cells showed prolonged in vitro survival like seminoma cells with a mutated RAS gene. However, no differences in proliferation index between these different groups of seminomas were found. Although patients with a seminoma containing a homogeneous restricted 12p amplification presented at a significantly younger age than those lacking it, the presence of a restricted 12p amplification/RAS mutation did not predict the stage of the disease at clinical presentation and the treatment response of primary seminomas. In 55 primary and metastatic tumors from 44 different patients who failed cisplatinum-based chemotherapy, the restricted 12p amplification and RAS mutations had the same incidence a
    corecore