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Abstract: The t(7;12)(q36;p13) translocation is a recurrent chromosome abnormality  

that involves the ETV6 gene on chromosome 12 and has been identified in 20–30% of 

infant patients with acute myeloid leukaemia (AML). The detection of t(7;12) rearrangements 

relies on the use of fluorescence in situ hybridization (FISH) because this translocation  

is hardly visible by chromosome banding methods. Furthermore, a fusion transcript 

HLXB9-ETV6 is found in approximately 50% of t(7;12) cases, making the reverse 

transcription PCR approach not an ideal screening method. Considering the report of few 

cases of variant translocations harbouring a cryptic t(7;12) rearrangement, we believe that 

the actual incidence of this abnormality is higher than reported to date. The clinical 

outcome of t(7;12) patients is believed to be poor, therefore an early and accurate diagnosis 
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is important in the clinical management and treatment. In this study, we have designed and 

tested a novel three-colour FISH approach that enabled us not only to confirm the presence 

of the t(7;12) in a number of patients studied previously, but also to identify a cryptic 

t(7;12) as part of a complex rearrangement. This new approach has proven to be an 

efficient and reliable method to be used in the diagnostic setting. 

Keywords: fluorescence in situ hybridization; chromosomal translocations; childhood 

leukaemia; t(7;12); ETV6; HLXB9 

 

1. Introduction  

Chromosomal abnormalities are a hallmark of cancer, with numerous examples of non-random 

translocations found in leukaemia [1,2]. Recurrent chromosomal abnormalities are used in the clinical 

practice for their diagnostic and prognostic value, their association with specific subtypes and 

subsequently as parameters on which to base therapy decisions. A number of genes with a pivotal role 

in leukaemia have been found rearranged with several partners in different cases [3–5]. One of these 

genes is the ets variant 6 gene, ETV6, that has been reported to be rearranged with approximately  

48 chromosomal bands in different types of abnormality. Several mechanisms of actions have been 

proposed for this gene in leukaemogenesis, showing an array of behavioural patterns depending on the 

partner involved [6].  

The t(7;12)(q36;p13) has been identified as a recurrent abnormality in a subset of paediatric AML. 

However, there are few reports of t(7;12) found in childhood ALL (see Table 1). This rearrangement 

involves the ETV6 gene in 12p13 and variable breakpoints on 7q36 [7–10], usually proximal to the 

homeobox HB9 gene, HLXB9. 

Several reports have investigated the incidence of the t(7;12) in infant leukaemia and have shown 

that this rearrangement occurs in approximately one third of paediatric patients with age between  

0–2 years [9–12]. According to these studies, the t(7;12) has not been associated with any particular 

AML subtype and constitutes a poor prognostic factor. From the cytogenetic point of view, the t(7;12) 

has been found as a sole abnormality in 2 out of 44 cases reported to date (see Table 1 for a summary 

of the literature). In the majority of cases, this rearrangement was accompanied by the presence of 

other abnormalities, mainly numerical. The presence of an extra chromosome 19 was found in the 

majority of cases, with an incidence of 33 out of 44 patients. This additional chromosome was also 

accompanied by the presence of an extra chromosome 8 (in 10 of these cases), in the same (8 cases) or 

different clones (2 cases), or an extra chromosome 13 (2 cases). The presence of these additional 

abnormalities in such a consistent fashion has prompted the screening for t(7;12) cases on infant 

patients selected on the basis of having a +19 and/or +8 in their leukaemic cells [9,10,12]. 

The mechanism of oncogenesis at the basis of t(7;12) leukaemias remains to be elucidated. 

Reverse-Transcription PCR experiments have shown that this translocation results in a fusion 

transcript between exon 1 of the HLXB9 gene, localized in 7q36, and exon 3 of ETV6 [13]. However, 

studies on larger series of patients have shown that such a fusion transcript is present only in 

approximately 50% of t(7;12) leukaemias [12,14]. To date, there is no report that confirms the 
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presence of a chimeric protein in the positive cases. Nevertheless, all of the t(7;12) patients have 

shown an ectopic expression of HLXB9, both at transcript and protein level, suggesting that this might 

promote leukaemogenesis in these cases [12,14,15]. 

Overexpression of HLXB9 has been recently reported in other forms of cancers, such as colorectal 

cancer and hepatocellular carcinoma, suggesting a common pathway of oncogenesis [16,17].  

ChIP-on-chip studies have been undertaken to explore specific pathways of HLXB9 involvement in 

order to identify possible targets for this transcription factor [18]. These have shown that the latter 

binds to the promoter of the prostaglandin E receptor 2 gene (PTGER2) and decreases its expression. 

Comparative expression studies using microarrays have shown that t(7;12) leukaemias have a very 

different expression profile than MLL-positive childhood AML, to indicate that these two subsets of 

paediatric leukaemia are ontogenically and biologically very different [19]. 

Table 1. Total number of cases with reported rearrangements resulting in t(7;12) and/or 

HLXB9-ETV6 fusion. AML, acute myeloid leukaemia; MDS, myelodysplastic syndrome; 

ALL, acute lymphoid leukaemia; ABL, acute biphenotypic leukaemia; AMKL, acute 

megakaryoblastic leukaemia; Pt no. in the second column from right refers to the patient 

no. as indicated in the original report.  

No. Disease  Karyotype Pt no. Ref. 

1 T-ALL 48,XX,t(7;12)(q36;p13),+8,+19 116 [20] 

2 AML-M0 47,XX,t(7;12)(q36;p13),+19 1 [14] 

3 AML 48,XX,t(7;12)(q36;p13),+8,+19 2 [14] 

4 AML 46,XY,t(7;12)(q36;p13)/47,idem,+8 13 [21] 

5 AML-M4 47,XY,t(7;12)(q36;p13),+8 46 [22] 

6 AML-M2 47,XX,t(7;12)(q36;p13),+19 1 [23]  

7 AML-M5a 49,XY,t(5;7;12)(q31;q36;p13),+8,+19,+del(22)(q13) 1 [15] 

8 ABL 48,XY,t(7;12)(q36;p13),+19,+22 2 [15] 

9 AML-M0 48,XY,t(1;7;12)(q25;q36;p13),+8,+19 3 [15] 

10 AML-M2 47,XX,t(7;12)(q36;p13),+19/49,idem,+X,+8 63 [24] 

11 AML-M2 47,XX,t(7;12)(q36;p13.1),+19 64 [24] 

12 AML-M6 
46,XY,der(7)t(7;12)(q32;p13)del(12)(p13)/ 

47,idem,+19/47,idem,+8 
26 [25] 

13 AML-M2 48,XX,t(7;12)(q32;p13),+13,+19 27 [25] 

14 AML 47,XY,t(7;12)(q36;p13),+19 1 [7] 

15 AML 48,XY,ins(12;7)(p13;q36;q11.1),+13,+19 2 [7] 

16 AML 46,XY,t(7;12)(q36;p13) 1 [11] 

17 AML-M1 47,XY,der(7)t(7;12)(q36;p13)del(12)(p13p13),der(12)t(7;12)(q36;p13),+19 2 [11] 

18 AML-M3v 47,XY,t(7;12)(q36;p13),+19 3 [11] 

19 AML 47,XX,t(7;12)(q36;p13),+19/48,idem,+19 4 [11] 

20 AML 47,XX,t(7;12)(q36;p13),+19 6 [11] 

21 AML 46,XX,t(7;12)(q36;p13) 9 [11] 

22 AML 46,XX,t(7;12)(q32;p13)/47,idem,+19 10 [11] 

23 AMKL 46,XX,add(7)(q22),del(12)(p12p13) 1 [26] 

24 MDS 46,XX,der(7)t(7;12)(q22;p13)del(7)(q22q36),der(12)t(7;12)(q36;p13) 1 [8] 

25 AML-M5 47,XY,del(7)(q32q35-36),t(7;12)(q36;p13),+19 2 [8] 
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Table 1. Cont. 

No. Disease  Karyotype Pt no. Ref. 

26 AML-M1 47,XX,t(7;12)(q36;p13),+19 3 [9] 

27 T-ALL 50,XX,+6,del(12)(p13),+18,+19,+22 4 [9] 

28 AML-M0 47,XY,t(7;12)(q36;p13),+der(19) 5 [9] 

29 AML-M4 48,XY,t(7;12)(q36;p13),+8,+19 6 [9] 

30 ALL 47,XY,t(7;12)(q36;p13),+19  7 [9] 

31 AML 
47,XX,t(7;12)(q36;p13),+8/48,idem,+19/ 

50,idem,+X,+19,+19/51,idem,+X,+8,+19,+19 
17 [9] 

32 AML-M0 47,XY,t(7;12)(q36;p13),+19 6 [10] 

33 AML 48,XY,t(7;12)(q36;p13),+8,+19 7 [10] 

34 AML-M0 46,XX,t(7;12)(q32;p13)/47,idem,+19 1 [12] 

35 AML-M2 47,XX,t(7;12)(q36p13),+19 4 [12] 

36 ALL 47,XX,del(7)(q31),del(12(p13) 5 [12] 

37 AML-M0 47,XX,+19 6 [12] 

38 AML-M5 47,XX,t(7;12)(q36p13),+19 7 [12] 

39 AML 48,XY,t(7;12)(q36;p13),+8,+19 2 [19] 

40 AML-M2 47,XX,t(7;12)(q36;p13),+19 3 [19] 

41 AML-M0 47,XX,t(7;12)(q36;p13),+19 4 [19] 

42 AML-M0 47,XX,del(7)(q11.2~21),del(12)(p13),+mar 5 [19] 

43 AML-M2 47,XX,del(12)(q12),+19 6 [19] 

44 AML 46,XY,inv(2)(p11p13),t(7;12)(q36;p13),der(16)t(1;16)(q22;p13),add(21)(q22) 5 [27] 

It is therefore important to be able to discriminate among different types of leukaemia by setting 

appropriate diagnostic tests for the detection of t(7;12) rearrangements. Considering that conventional 

methods of chromosome banding often do not reach the resolutive power to identify translocations 

between chromosome ends, molecular cytogenetics represents the most accurate diagnostic method. 

The designing of probes with adequate specificity and sensitivity is crucial for the success of 

fluorescence in situ hybridization assays.  

In this study we describe the use of a novel three-colour FISH assay for the detection of the t(7;12). 

We have here demonstrated that this new approach can identify the rearrangement accurately in 

straight forward t(7;12) cases and also as cryptic translocation in a complex rearrangement.  

2. Experimental Section 

2.1. Patients Samples 

Eight patient’s samples in the form of archival methanol:acetic acid fixed chromosomes and cells 

suspensions were used in this study. Of these, five cases were previously reported and three new cases 

were contributed by the Cytogenetics laboratory of the N.N. Blokhin Russian Cancer Research Center 

RAMS (patients nos. 6 and 7) and the Molecular Biology Laboratory of Regional Children’s Hospital 

N 1 (patient no. 8). The clinical and cytogenetic characteristics of the patients are summarized in Table 

2. Patients were selected on the basis of the following criteria: (i) the presence of t(7;12) (patients nos. 
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1–4 and 7); (ii) the presence of a fusion transcript HLXB9-ETV6 (patient no, 5) or (iii) the presence of 

abnormalities of 12p and/or 7q (patients nos. 6 and 8). 

Table 2. Clinical and cytogenetic data of the patients selected for this study. 

pt Age/sex  Disease  Karyotype  Ref. 

1 7 mo/F AML 

46,XX,der(7)t(7;12)(q22;p13)del(7)(q22q36)  

Revised karyotype: 

46,XX,der(7)t(7;12)(q36;p13)del(7)(q22q36) 

[8,10] 

2 3 mo/M AML-M0 47,XY,t(7;12)(q36;p13),+der(19)  [10] 

3 5 mo/F AML-M1 47,XX,t(7;12)(q36;p13),+19  [10] 

4 8 mo/F AML 47,XX,t(7;12),+19  [23] 

5 4 mo/F  AML-M2 

47,XX,t(7;16)(q36;q12),+19 

Revised karyotype: 

47,XX,der(16)t(7;12;16)(q36;p13;q12)inv(16)(p11.

2q12),+19 

[19] 

6 10 mo/F AML-M4 

48,XX,+19+22,inv(16)(p13q22),del(12p)(p13) 

Revised karyotype: 

48,XX,+19+22,t(7;12)(q36;p13),inv(16)(p13q22) 

this study 

7 6 mo/F AML-M7 47,XX,+19/idem,t(7;12)(q36;p13),+mar this study 

8 5 mo/F MPAL 

46,XX,del(7)(q11),del(12)(p13) 

Revised karyotype: 

46,XX, der(7)t(7;12)(q11;p13)del(7)(q11q36) 

this study 

Pt, patient; mo, months; y, years; M, male; F, female; AML, acute myeloid leukaemia; MPAL, mixed 

phenotype acute leukaemia. A revised karyotype for patients nos. 1, 5, 6 and 8 has been included after FISH 

analysis carried out as part of this study. 

2.2. Probes 

Probes used were: (i) a break-apart probe composed of an orange labelled probe centromeric to the 

ETV6 gene in 12p13, a green labelled probe telomeric to and slightly overlapping with ETV6 (see 

Figure 1); (ii) a probe combination made of two loci flanking the HLXB9 gene, both labelled in blue 

(Aqua) (see Figure 1); (iii) a revised version of (i) with a more distal green probe, not to contain ETV6 

sequences (see the last Figure, 8C); Probes (i) and (ii) were applied simultaneously and constituted the 

three colour probe set used as a novel approach in this study. This probe set, together with (iii) were 

designed and provided by MetaSystems GmbH, Altlussheim, Germany. Additional probes used were: 

(iv) a whole chromosome painting probe specific for chomosome 12 (12WCP), labelled with biotin 

and detected with Cy3-streptavidin and (v) a whole chromosome painting specific for chromosome 16 

(16WCP), labelled with FITC. Probes (iv) and (v) were purchased from Cambio, Cambridge, UK. 

2.3. Fluorescence in Situ Hybridization 

Fluorescence in situ hybridization (FISH) experiments were carried out according to the 

manufacturers instructions with slight modifications. Briefly: slides were denatured with 70% 

formamide at 70 °C for 5 min. Probe mixture was denatured at 65 °C for 10 min, incubated at 37 °C 

for 10 min, and subsequently applied to the slides under a 22 × 22 mm cover-slip. After overnight 
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hybridization, slides were washed with 2× SSC (pH 8.0) for 5 min on shaker, followed by another 

wash in 4× SSC/Tween20 for 5 min on shaker and then a final wash in 1× PBS for 5 min on shaker. 

The slides were then mounted in Vectashield (Vector Laboratories Ltd., Peterborough, UK) containing 

49, 6-Diamidine-29-phenylindole dihydrochloride (DAPI). Hybridized chromosomes and nuclei were 

viewed and images were captured using a Zeiss axioplan epifluorescence microscope (Carl Zeiss, 

Cambridge, UK) equipped with a CCD camera and MetaSystems Isis v. 5.3 software. 

Figure 1. Ideograms of chromosomes 12 and 7 with details of the localization of the 

probes used for FISH. On the right of each chromosome ideogram, the chromosomal bands 

of 12p13 and 7q36 are indicated. On the left of the ideograms, the probes used and their 

position with respect to the gene of interest are indicated. 

 

3. Results  

A total of eight patients were analysed in this study. Of these, five patients had previously been 

reported. Patients nos. 1–4 had already been studied for the presence of the t(7;12) [8,10,23], whereas 

patient no. 5 failed to show a t(7;12) in previous reports [19], although this patient sample showed an 

ectopic expression of HLXB9 and a fusion transcript HLXB9-ETV6. Patients nos. 6–8 were not 

reported previously. Morphological and cytogenetic characteristics of all patients are summarized in 

Table 2. FISH studies were carried out using a new three-colour probe set on all patients. Furthermore, 

patient no. 5 was investigated using whole chromosome 16 paint (wcp16) and whole chromosome  

12 paint (wcp12) simultaneously. In addition to these probes, a revised version of the ETV6 dual 

colour probe was also applied at a later stage to get a better definition of the breakpoint on 12p13. The 

new three colour probe set identified the t(7;12)(q36;p13) in seven patients out of eight. Of these, four 

patients (patients nos. 1–4) were already investigated in previous studies and were used as positive 

controls in this work. Interestingly, patients nos. 1 and 8 both showed a deletion of 7q in the same 

chromosome involved in the t(7;12) rearrangement (see Figures 2 and 3), although the deletion 

breakpoint in patient no. 8 seems more proximal. The t(7;12) rearrangement in patient no. 8 should be 

then revised as der(7)t(7;12)(q36;p13)del(7)(q11q36). Similarly, the rearrangement in patient no. 1 

could be further refined as der(7)t(7;12)(q36;p13)del(7)(q22q36).  
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Figure 2. Detection of t(7;12) rearrangement with simultaneous deletion of chromosome 7 

at band q22. A representative FISH image obtained on a bone marrow metaphase of patient 1 

shows localization of FISH signals on chromosome 7 (blue signals), der(7) (green signals), 

chromosome 12 (green and orange signals) and der(12) (blue and orange signals. Note that 

the the der(7) is considerably shorter than the normal chromosome 7, indicating a deletion 

of the long arm. The DAPI counterstain used to visualize the chromosomes has been 

converted into grayscale to simulate a G-like banding pattern (A). The schematic 

representation of the hybridization pattern is also shown on the ideograms, that depict the 

deletion on the der(7) at band q22 (B). 

 

Figure 3. Detection of t(7;12) rearrangement with simultaneous deletion of chromosome 7 

at band q11. A representative FISH image obtained on a bone marrow metaphase of patient 8 

shows localization of FISH signals on chromosome 7 (blue signals), der(7) (green signals), 

chromosome 12 (green and orange signals) and der(12) (blue and orange signals). Note 

that the the der(7) is considerably shorter than the normal chromosome 7, indicating a 

deletion of the long arm. The DAPI counterstain used to visualize the chromosomes has 

been converted into grayscale to simulate a Q-like banding pattern (A). The schematic 

representation of the hybridization pattern is also shown on the ideograms, that depict the 

deletion on the der(7) at band q11 (B). 

 

The t(7;12) rearrangement in patients nos. 2–4 was successfully confirmed by FISH using the three 

colour probe set (a representative FISH image from patient 2 only is shown in Figure 4A). In these 

cases, same as for patients nos. 1 and 8, it is possible to appreciate a clear split of the ETV6 probe, with 

a green signal localized on the der(7) and an orange signal localized on the der(12), proximal to the 

blue signal indicating translocation of the HLXB9 region from chromosome 7. 
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Figure 4. Detection of straight forward t(7;12) rearrangement. A representative FISH 

image obtained on a bone marrow metaphase of patient 2 shows localization of FISH 

signals on chromosome 7 (blue signals), der(7) (green signals), chromosome 12 (green and 

orange signals) and der(12) (blue and orange signals). The DAPI counterstain used to 

visualize the chromosomes has been converted into grayscale to simulate a G-like banding 

pattern (A). The schematic representation of the hybridization pattern is also shown on the 

ideograms (B). 

 

A different situation has been observed for patients nos. 6 and 7, where the three colour probe set 

has shown a different distribution of hybridization signals, with the orange signals, specific for the 

probe proximal to ETV6, present on both normal chromosome 12 and der(12), the green signals, 

specific for the probe distal to (and overlapping with) ETV6, present in three locations [normal 12, 

der(12) and der(7)], and blue signals also present in three locations [normal 7, der(7) and der(12)]. This 

hybridization pattern results in the two derivatives carrying signals for all three fluorophores (see 

Figure 5).  

Figure 5. Detection of t(7;12) rearrangement shows heterogeneity of breakpoints in the 

ETV6 and HLXB9 regions. A representative FISH image obtained on a bone marrow 

metaphase of patient 7 shows localization of blue hybridization signals on chromosome 7, 

the der(7) and the der(12) (A), orange hybridization signals on chromosome 12 and the 

der(12) (B) and green hybridization signals on chromosome 12, the der(12) and the der(7) 

(C). Images relative to all fluorophores have been merged with the DAPI stained 

metaphase image to show co-localization of FISH signals. The DAPI counterstain has been 

converted into grayscale to simulate a Q-like banding pattern (D). 
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The remaining patient (no. 5) was selected on the basis of its expression profile, indicative for the 

presence of the t(7;12), although this rearrangement was not seen at the cytogenetic level [19]. Patient 

no. 5 was reported as having a translocation t(7;16), as shown by G-banding analysis (see Figure 6). 

Figure 6. The t(7;16) rearrangement in patient no. 5. A representative karyotype obtained 

after G-banding of bone marrow metaphase of patient no. 5 shows a t(7;16), with a shorter 

chromosome 16, der(16), and an elongated chromosome 7, der(7). No involvement of 

chromosome 12 is noted at this stage.  

 

However, this appeared to be a more complex rearrangement involving a cryptic t(7;12) in the form 

of t(7;12;16) (see Figure 7). The use of WCP16 confirmed that the terminal portion of the der(7) was 

chromosome 16 material. Chromosome 12 insertion into the der(7) was not shown by WCP12. 

However, the three-colour probe set showed that signals corresponding to the three fluorophores were 

present on the der(7) (Figure 7). Only orange signals were present on the der(7) when using the new 

version of the break-apart ETV6 probe (see Figure 8). In the revised version, the green labelled probe 

was designed to be distal to the one in the previous version and would not overlap with ETV6 

sequences. The blue hybridization signals corresponding to the HLXB9 region were found on the 

normal chromosome 7 and the der(16) (see Figure 7). 
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Figure 7. Complex cryptic three way rearrangement t(7;12;16). Three colour FISH using 

the ETV6-HLXB9 probe set on a bone marrow metaphase of patient no. 5 shows 

localization of blue hybridization signals on chromosome 7, the der(7), the der(12) and the 

der(16), whereas orange and green hybridization signals are localized on chromosome 12 

and the der(7) (A). The use of whole chromosome paint did not confirm the involvement of 

chromosome 12, due to the small size of the translocated region. However, the whole 

chromosome paint specific for chromosome 16 highlighted the involvement of this 

chromosome and its translocation onto chromosome 7 (B). The der(7) is indicated by a 

yellow arrowhead and the der(16) is indicated by a block arrow in light blue in both (A) 

and (B). The schematic representation in (C) shows localization of FISH signals on the 

ideograms of the respective chromosomes involved in the rearrangement. This also shows 

a possible inversion event to justify localization of blue hybridization signals on what 

appears to be the short arm of chromosome 16. 

 

4. Discussion 

4.1. Summary of Results on Chromosome 7 and 12 Breakpoints  

The use of our novel three colour FISH probe set has enabled the detection of a t(7;12) 

rearrangement in all 8 patients here reported. In five cases (patients nos. 1–4 and 8), the breakpoints 

were within the ETV6 gene in 12p13 between the orange probe and the green probe and proximal to 

the HLXB9 region in 7q36, targeted by the blue probe. In patients nos. 5, 6 and 7 the breakpoint at 

12p13 occurred also within ETV6, but in a region distal to the one reported in the other patients. This 

resulted in a different pattern of FISH signals, with blue, orange and green signals on the der(12) 

(patients nos 6 and 7) or on the der(7) (patient no. 5). The new version of the break-apart probe is 
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designed to cover a broader area, to include a range of breakpoints in 12p13 within the ETV6 region. 

Heterogeneity in the breakpoint regions of both 12p13 and 7q36 has been previously reported [7,10,28]. 

This is obviously demonstrated once again in this report, where the variability not only in 12p13, but 

also in the 7q36 breakpoints is reiterated through the observation of the different patterns in different 

patients. In particular, whereas most patients show two blue signals (one on the normal chromosome 7 

and one on the derivative), patients nos. 5 and 7 show blue hybridization signals in three locations  

(see Figures 3 and 4). The use of such a versatile probe-set would enable the detection of t(7;12) in a 

larger number of patients, to include those with breakpoints in the area of interest, but not necessarily 

within the genes of interest. Altogether, the new approach would make interpretation of FISH images 

easier and more immediate in the diagnostic setting. 

Figure 8. Refined breakpoint localization using a re-designed probe set for the ETV6 

region. A representative FISH image obtained on a bone marrow metaphase of patient 5 

shows refined localization of breakpoints, with der(7) carrying only orange signals, der(12) 

carrying only green signals and chromosome 12 carrying both green and orange signals (A). 

This is also shown in the schematic representation depicting ideograms of the 

chromosomes hybridized (B). The newly observed hybridization pattern is due to the green 

probe being more distal than in the previous probe set, hence non-overlapping with ETV6 

sequences (C). 

 

4.2. Finding of a New Cryptic t(7;12) Rearrangement 

This is the third report to date of a cryptic t(7;12) rearrangement as part of a complex translocation 

involving more than two chromosomes. The patient here described had been reported as having a 

t(7;16). As part of a previous screening for the t(7;12) on infant leukaemias with chromosome 7 

abnormalities, FISH analysis was performed by us using a different set of probes for ETV6. However, 

this failed to show a rearrangement of chromosome 12 (data not shown). Later on, this patient was 

reported to have an HLXB9-ETV6 fusion transcript at the molecular level [19]. This prompted us to 

repeat the FISH analysis using the novel three-colour probe set here described. The latter approach 

revealed a t(7;12) rearrangement that was confirmed as a three way translocation. From our 

observations, it became obvious that the probes designed to flank the regions of interests in 7q36 and 

12p13 respectively, allowed the detection of a broader spectrum of breakpoints within these areas. To 

the best of our knowledge, only two cases of a cryptic t(7;12) translocation have been reported in the 
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literature [15]. None of these cases involved chromosome 16 as they had a t(5;7;12) and a t(1;7;12) 

respectively. Both these cases had over-expression of HLXB9, suggesting that the mechanism of 

leukaemogenesis in the t(7;12) cases and variants might be similar.  

The presence of variant or masked translocations has been reported in numerous instances in 

leukaemia. Classic examples of these rearrangements are variant or masked Philadelphia chromosomes in 

chronic myeloid leukaemia [29,30], variant or complex t(15;17) in acute promyelocytic leukaemia [31,32] 

and many others. Complex translocations involving ETV6 resulting in known fusions have also been 

reported [15,33–35]. The mechanisms that lead to the formation of these complex rearrangements are 

still unclear, as still unclear is the sequence of events that occurs in double strand breaks involving 

more than two chromosomes. In the complex translocation presented in this report, the hybridisation 

pattern observed is suggestive of insertion of chromosome 12 material into the derivative 7, 

translocation of chromosome 16 material onto the derivative 7 and also possibly an inversion or an 

insertion in the der(16) to justify the presence of blue signals in what appears to be its short arm. This 

is indicative of at least two breakpoints on chromosome 16 (see Figure 7). Further analysis with 

informative FISH probes might help to fully elucidate this particular case. Nevertheless, the 

importance of disclosing cryptic translocations and complex rearrangements remains in the potential 

prognostic value attributable to it. Although the prognostic significance of the t(7;12) merits further 

investigation, it is to date believed that this rearrangement is an indicator of poor clinical outcome [11]. 

The t(7;12) is also the second most common chromosomal abnormality in infant leukaemia after 

mixed-lineage leukaemia gene (MLL) rearrangements [6]. It is therefore relevant to be able to 

discriminate between two very different parameters on which to base therapy choices. The availability 

of a good FISH probe-set to be used for screening in the diagnostic setting is at the basis of patient 

stratification into low-risk/high risk categories. The finding of cryptic t(7;12) indicates that the 

incidence of these rearrangements might be higher than reported to date. The screening of leukaemia 

patients using the new FISH assay will help define the real incidence of these cases. 

5. Conclusions 

Our study showed the effectiveness of a novel three colour FISH approach for the detection of 

t(7;12) rearrangements involving the HLXB9 region in 7q36 and the ETV6 region in 12p13. 

Abnormalities of these regions are often undetected by conventional cytogenetic methods. We foresee 

the usefulness of such FISH assay in the diagnostic setting, for a more effective screening of specific 

rearrangements whose incidence might be to date underestimated.  
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