743 research outputs found

    Increased peptide promiscuity provides a rationale for the lack of N regions in the neonatal T cell repertoire

    Get PDF
    AbstractMaking use of mice deficient for terminal deoxynucleotidyl transferase (TdT) expression and a random peptide library, we have examined the diversity and peptide specificity of the neonatal T cell repertoire specific for a single H-2Db-restricted peptide. Consistent with the predicted decrease in repertoire diversity, polyclonal CTL lines and individual clones from different TdT° mice are more similar to each other than those from different wild-type mice in terms of their finger-prints of cross-reactivity to the library and their TCR sequences. We have also found that several TdT° CTL clones cross-react with many more library peptides than wild-type CTL clones. In a few instances, the degree of peptide promiscuity correlates with TCR sequence characteristics such as N region addition and homology-directed recombination, but not CDR3 loop length. Based on epitope titrations for each clone, TCR affinity for antigen is consistently high; thus, this reduced specificity for peptide may coincide with an accentuated affinity for the α helices of the MHC. Peptide promiscuity in the neonate may allow the relatively small numbers of T cells in the periphery to protect against a broader range of pathogens

    Central Tolerance to Tissue-specific Antigens Mediated by Direct and Indirect Antigen Presentation

    Get PDF
    Intrathymic expression of tissue-specific antigens (TSAs) by medullary thymic epithelial cells (Mtecs) leads to deletion of autoreactive T cells. However, because Mtecs are known to be poor antigen-presenting cells (APCs) for tolerance to ubiquitous antigens, and very few Mtecs express a given TSA, it was unclear if central tolerance to TSA was induced directly by Mtec antigen presentation or indirectly by thymic bone marrow (BM)-derived cells via cross-presentation. We show that professional BM-derived APCs acquire TSAs from Mtecs and delete autoreactive CD8 and CD4 T cells. Although direct antigen presentation by Mtecs did not delete the CD4 T cell population tested in this study, Mtec presentation efficiently deleted both monoclonal and polyclonal populations of CD8 T cells. For developing CD8 T cells, deletion by BM-derived APC and by Mtec presentation occurred abruptly at the transitional, CD4high CD8low TCRintermediate stage, presumably as the cells transit from the cortex to the medulla. These studies reveal a cooperative relationship between Mtecs and BM-derived cells in thymic elimination of autoreactive T cells. Although Mtecs synthesize TSAs and delete a subset of autoreactive T cells, BM-derived cells extend the range of clonal deletion by cross-presenting antigen captured from Mtecs

    Naive CD8+ T cells differentiate into protective memory-like cells after IL-2–anti–IL-2 complex treatment in vivo

    Get PDF
    An optimal CD8+ T cell response requires signals from the T cell receptor (TCR), co-stimulatory molecules, and cytokines. In most cases, the relative contribution of these signals to CD8+ T cell proliferation, accumulation, effector function, and differentiation to memory is unknown. Recent work (Boyman, O., M. Kovar, M.P. Rubinstein, C.D. Surh, and J. Sprent. 2006. Science. 311:1924–1927; Kamimura, D., Y. Sawa, M. Sato, E. Agung, T. Hirano, and M. Murakami. 2006. J. Immunol. 177:306–314) has shown that anti–interleukin (IL) 2 monoclonal antibodies that are neutralizing in vitro enhance the potency of IL-2 in vivo. We investigated the role of IL-2 signals in driving CD8+ T cell proliferation in the absence of TCR stimulation by foreign antigen. IL-2 signals induced rapid activation of signal transducer and activator of transcription 5 in all CD8+ T cells, both naive and memory phenotype, and promoted the differentiation of naive CD8+ T cells into effector cells. IL-2–anti–IL-2 complexes induced proliferation of naive CD8+ T cells in an environment with limited access to self–major histocompatibility complex (MHC) and when competition for self-MHC ligands was severe. After transfer into wild-type animals, IL-2–activated CD8+ T cells attained and maintained a central memory phenotype and protected against lethal bacterial infection. IL-2–anti–IL-2 complex–driven memory-like CD8+ T cells had incomplete cellular fitness compared with antigen-driven memory cells regarding homeostatic turnover and cytokine production. These results suggest that intense IL-2 signals, with limited contribution from the TCR, program the differentiation of protective memory-like CD8+ cells but are insufficient to guarantee overall cellular fitness

    The Nrarp Gene Encodes an Ankyrin-Repeat Protein That Is Transcriptionally Regulated by the Notch Signaling Pathway

    Get PDF
    AbstractWe have identified a gene encoding a novel protein that is transcriptionally regulated by the Notch signaling pathway in mammals. This gene, named Nrarp (for Notch-regulated ankyrin-repeat protein), encodes a 114 amino acid protein that has a unique amino-terminus and a carboxy-terminal domain containing two ankyrin-repeat motifs. A Xenopus homolog of the Nrarp gene was previously identified in a large-scale in situ hybridization screen of randomly isolated cDNA clones. We demonstrate that in T-cell and myoblast cell lines expression of the Nrarp gene is induced by the intracellular domain of the Notch1 protein, and that this induction is mediated by a CBF1/Su(H)/Lag-1 (CSL)-dependent pathway. During mouse embryogenesis, the Nrarp gene is expressed in several tissues in which cellular differentiation is regulated by the Notch signaling pathway. Expression of the Nrarp gene is downregulated in Notch1 null mutant mouse embryos, indicating that expression of the Nrarp gene is regulated by the Notch pathway in vivo. Thus, Nrarp transcript levels are regulated by the level of Notch1 signaling in both cultured cell lines and mouse embryos. During somitogenesis, the Nrarp gene is expressed in a pattern that suggests that Nrarp expression may play a role in the formation of somites, and Nrarp expression in the paraxial mesoderm is altered in several Notch pathway mutants that exhibit defects in somite formation. These observations demonstrate that the Nrarp gene is an evolutionarily conserved transcriptional target of the Notch signaling pathway

    Strong agonist ligands for the T cell receptor do not mediate positive selection of functional CD8+ T cells

    Get PDF
    AbstractPositive selection of functional CD8+ T cells expressing an MHC class I-restricted T cell receptor can be induced in fetal thymus organ culture by class I-binding peptides related to the antigenic peptide ligand. Peptides that act as antagonist or weak agonist/antagonist ligands for mature T cells work efficiently in this regard. In the present study, we have investigated whether low concentrations of the original agonist peptide, or variants that still have a strong agonist activity can also mediate positive selection. The antigenic peptide did not Induce positive selection at any concentration tested. A strong agonist variant was capable of stimulating the differentiation of TCRhl CD8+ cells, giving the appearance of phenotypic positive selection. However, these cells lacked biological function, since they could not proliferate In response to antigen. The most efficient positive selection resulted with Ilgands that did not activate mature T cells or stimulate negative selection

    Correlating Notch Signaling with Thymocyte Maturation

    Get PDF
    AbstractThe Notch receptor and its ligands are involved in many developmental processes. They are highly expressed in the thymus and have been implicated in the CD4 versus CD8 lineage decision. We identified the constitutively active intracellular fragment of murine Notch-1 as capable of rendering thymomas resistant to glucocorticoid-induced apoptosis. This effect was confirmed in other T cell lines and in CD4+CD8+ DP thymocytes. Activation of the Notch signaling pathway also upregulated a number of other markers that, like steroid resistance, correlate with DP maturation into both the CD4 and CD8 lineages. These results suggest that Notch signaling is critically involved in the maturation of DP thymocytes into both CD4+ and CD8+ SP thymocytes
    • …
    corecore