1,809 research outputs found

    Visualising Androgen Receptor Activity in Male and Female Mice

    Get PDF
    Androgens, required for normal development and fertility of males and females, have vital roles in the reproductive tract, brain, cardiovascular system, smooth muscle and bone. Androgens function via the androgen receptor (AR), a ligand-dependent transcription factor. To assay and localise AR activity in vivo we generated the transgenic "ARE-Luc" mouse, expressing a luciferase reporter gene under the control of activated endogenous AR. In vivo imaging of androgen-mediated luciferase activity revealed several strongly expressing tissues in the male mouse as expected and also in certain female tissues. In males the testes, prostate, seminal vesicles and bone marrow all showed high AR activity. In females, strong activity was seen in the ovaries, uterus, omentum tissue and mammary glands. In both sexes AR expression and activity was also found in salivary glands, the eye (and associated glands), adipose tissue, spleen and, notably, regions of the brain. Luciferase protein expression was found in the same cell layers as androgen receptor expression. Additionally, mouse AR expression and activity correlated well with AR expression in human tissues. The anti-androgen bicalutamide reduced luciferase signal in all tissues. Our model demonstrates that androgens can act in these tissues directly via AR, rather than exclusively via androgen aromatisation to estrogens and activation of the estrogen receptor. Additionally, it visually demonstrates the fundamental importance of AR signalling outside the normal role in the reproductive organs. This model represents an important tool for physiological and developmental analysis of androgen signalling, and for characterization of known and novel androgenic or antiandrogenic compounds

    Circulating microRNAs as potential new biomarkers for prostate cancer

    Get PDF
    Since they were first described in the 1990s, circulating microRNAs (miRNAs) have provided an active and rapidly evolving area of current research that has the potential to transform cancer diagnostics and therapeutics. In particular, miRNAs could provide potential new biomarkers for prostate cancer, the most common cause of cancer in UK men. Current diagnostic tests for prostate cancer have low specificity and poor sensitivity. Further, although many prostate cancers are so slow growing as not to pose a major risk to health, there is currently no test to distinguish between these and cancers that will become aggressive and life threatening. Circulating miRNAs are highly stable and are both detectable and quantifiable in a range of accessible bio fluids, thus have the potential to be useful diagnostic, prognostic and predictive biomarkers. This review aims to summarise the current understanding of circulating miRNAs in prostate cancer patients and their potential role as biomarkers

    The prohibitin-repressive interaction with E2F1 is rapidly inhibited by androgen signalling in prostate cancer cells

    Get PDF
    Prohibitin (PHB) is a tumour suppressor molecule with pleiotropic activities across several cellular compartments including mitochondria, cell membrane and the nucleus. PHB and the steroid-activated androgen receptor (AR) have an interplay where AR downregulates PHB, and PHB represses AR. Additionally, their cellular locations and chromatin interactions are in dynamic opposition. We investigated the mechanisms of cell cycle inhibition by PHB and how this is modulated by AR in prostate cancer. Using a prostate cancer cell line overexpressing PHB, we analysed the gene expression changes associated with PHB-mediated cell cycle arrest. Over 1000 gene expression changes were found to be significant and gene ontology analysis confirmed PHB-mediated repression of genes essential for DNA replication and synthesis, for example, MCMs and TK1, via an E2F1 regulated pathway-agreeing with its G1/S cell cycle arrest activity. PHB is known to inhibit E2F1-mediated transcription, and the PHB:E2F1 interaction was seen in LNCaP nuclear extracts, which was then reduced by androgen treatment. Upon two-dimensional western blot analysis, the PHB protein itself showed androgen-mediated charge differentiation (only in AR-positive cells), indicating a potential dephosphorylation event. Kinexus phosphoprotein array analysis indicated that Src kinase was the main interacting intracellular signalling hub in androgen-treated LNCaP cells, and that Src inhibition could reduce this AR-mediated charge differentiation. PHB charge change may be associated with rapid dissociation from chromatin and E2F1, allowing the cell cycle to proceed. The AR and androgens may deactivate the repressive functions of PHB upon E2F1 leading to cell cycle progression, and indicates a role for AR in DNA replication licensing

    Lipid profiling of complex biological mixtures by liquid chromatography/mass spectrometry using a novel scanning quadrupole data-independent acquisition strategy

    Get PDF
    Rationale A novel data-independent acquisition method is detailed that incorporates a scanning quadrupole in front of an orthogonal acceleration time-of-flight (TOF) mass analyser. This approach is described and the attributes are compared and contrasted to other DIA approaches. Methods Specific application of the method to both targeted and untargeted lipidomic identification strategies is discussed, with data from both shotgun and LC separated lipidomics experiments presented. Results The benefits of the fast quadrupole scanning technique are highlighted, and include improvements in speed and specificity for complex mixtures providing high quality qualitative and quantitative data. Conclusions In particular the high specificity afforded by the scanning quadrupole improves qualitative information for lipid identification

    Building a synthetic mechanosensitive signaling pathway in compartmentalized artificial cells

    Get PDF
    To date reconstitution of one of the fundamental methods of cell communication, the signaling pathway, has been unaddressed in the bottom-up construction of artificial cells (ACs). Such developments are needed to increase the functionality and biomimicry of ACs, accelerating their translation and application in biotechnology. Here we report the construction of a de novo synthetic signaling pathway in microscale nested vesicles. Vesicle cell models respond to external calcium signals through activation of an intracellular interaction between phospholipase A2 and a mechanosensitive channel present in the internal membranes, triggering content mixing between compartments and controlling cell fluorescence. Emulsion-based approaches to AC construction are therefore shown to be ideal for the quick design and testing of new signaling networks and can readily include synthetic molecules difficult to introduce to biological cells. This work represents a foundation for the engineering of multi-compartment-spanning designer pathways that can be utilised to control downstream events inside an artificial cell, leading to the assembly of micromachines capable of sensing and responding to changes in their local environment

    MicroRNAs as biomarkers for prostate cancer prognosis: a systematic review and a systematic reanalysis of public data

    Get PDF
    Background Reliable prognostic biomarkers to distinguish indolent from aggressive prostate cancer (PCa) are lacking. Many studies investigated microRNAs (miRs) as PCa prognostic biomarkers, often reporting inconsistent findings. We present a systematic review of these; also systematic reanalysis of public miR-profile datasets to identify tissue-derived miRs prognostic of biochemical recurrence (BCR) in patients undergoing radical prostatectomy. Methods Independent PubMed searches were performed for relevant articles from January 2007 to December 2019. For the review, 128 studies were included. Pooled-hazard-ratios (HRs) for miRs in multiple studies were calculated using a random-effects model (REM). For the reanalysis, five studies were included and Cox proportional-hazard models, testing miR association with BCR, performed for miRs profiled in all. Results Systematic review identified 120 miRs as prognostic. Five (let-7b-5p, miR-145-5p, miR152-3p, miR-195-5p, miR-224-5p) were consistently associated with progression in multiple cohorts/studies. In the reanalysis, ten (let-7a-5p, miR-148a-3p, miR-203a-3p, miR-26b-5p, miR30a-3p, miR-30c-5p, miR-30e-3p, miR-374a-5p, miR-425-3p, miR-582-5p) were significantly prognostic of BCR. Of these, miR-148a-3p (HR = 0.80/95% CI = 0.68-0.94) and miR-582-5p (HR = 0.73/95% CI = 0.61-0.87) were also reported in prior publication(s) in the review. Conclusions Fifteen miRs were consistently associated with disease progression in multiple publications or datasets. Further research into their biological roles is warranted to support investigations into their performance as prognostic PCa biomarkers

    Urinary biomarker concentrations of captan, chlormequat, chlorpyrifos and cypermethrin in UK adults and children living near agricultural land

    Get PDF
    There is limited information on the exposure to pesticides experienced by UK residents living near agricultural land. This study aimed to investigate their pesticide exposure in relation to spray events. Farmers treating crops with captan, chlormequat, chlorpyrifos or cypermethrin provided spray event information. Adults and children residing ≤100 m from sprayed fields provided first-morning void urine samples during and outwith the spray season. Selected samples (1–2 days after a spray event and at other times (background samples)) were analysed and creatinine adjusted. Generalised Linear Mixed Models were used to investigate if urinary biomarkers of these pesticides were elevated after spray events. The final data set for statistical analysis contained 1518 urine samples from 140 participants, consisting of 523 spray event and 995 background samples which were analysed for pesticide urinary biomarkers. For captan and cypermethrin, the proportion of values below the limit of detection was greater than 80%, with no difference between spray event and background samples. For chlormequat and chlorpyrifos, the geometric mean urinary biomarker concentrations following spray events were 15.4 μg/g creatinine and 2.5 μg/g creatinine, respectively, compared with 16.5 μg/g creatinine and 3.0 μg/g creatinine for background samples within the spraying season. Outwith the spraying season, concentrations for chlorpyrifos were the same as those within spraying season backgrounds, but for chlormequat, lower concentrations were observed outwith the spraying season (12.3 μg/g creatinine). Overall, we observed no evidence indicative of additional urinary pesticide biomarker excretion as a result of spray events, suggesting that sources other than local spraying are responsible for the relatively low urinary pesticide biomarkers detected in the study population

    Detection of YAP1 and AR-V7 mRNA for prostate cancer prognosis using an ISFET lab-on-chip platform

    Get PDF
    Prostate cancer (PCa) is the second most common cause of male cancer-related death worldwide. The gold standard of treatment for advanced PCa is androgen deprivation therapy (ADT). However, eventual failure of ADT is common and leads to lethal metastatic castration-resistant PCa. As such, the detection of relevant biomarkers in the blood for drug resistance in metastatic castration-resistant PCa patients could lead to personalized treatment options. mRNA detection is often limited by the low specificity of qPCR assays which are restricted to specialized laboratories. Here, we present a novel reverse-transcription loop-mediated isothermal amplification assay and have demonstrated its capability for sensitive detection of AR-V7 and YAP1 RNA (3 × 101 RNA copies per reaction). This work presents a foundation for the detection of circulating mRNA in PCa on a non-invasive lab-on-chip device for use at the point-of-care. This technique was implemented onto a lab-on-chip platform integrating an array of chemical sensors (ion-sensitive field-effect transistors) for real-time detection of RNA. Detection of RNA presence was achieved through the translation of chemical signals into electrical readouts. Validation of this technique was conducted with rapid detection (<15 min) of extracted RNA from prostate cancer cell lines 22Rv1s and DU145s

    The antiandrogen enzalutamide downregulates TMPRSS2 and reduces cellular entry of SARS-CoV-2 in human lung cells

    Get PDF
    SARS-CoV-2 attacks various organs, most destructively the lung, and cellular entry requires two host cell surface proteins: ACE2 and TMPRSS2. Downregulation of one or both of these is thus a potential therapeutic approach for COVID-19. TMPRSS2 is a known target of the androgen receptor, a ligand-activated transcription factor; androgen receptor activation increases TMPRSS2 levels in various tissues, most notably prostate. We show here that treatment with the antiandrogen enzalutamide—a well-tolerated drug widely used in advanced prostate cancer—reduces TMPRSS2 levels in human lung cells and in mouse lung. Importantly, antiandrogens significantly reduced SARS-CoV-2 entry and infection in lung cells. In support of this experimental data, analysis of existing datasets shows striking co-expression of AR and TMPRSS2, including in specific lung cell types targeted by SARS-CoV-2. Together, the data presented provides strong evidence to support clinical trials to assess the efficacy of antiandrogens as a treatment option for COVID-19
    • …
    corecore