32 research outputs found

    Effects of a Visual Distracter Task on the Gait of Elderly versus Young Persons

    Get PDF
    Seniors show deficits of dual-task walking when the second task has high visual-processing requirements. Here, we evaluate whether similar deficits emerge when the second task is discrete rather than continuous, as is often the case in everyday life. Subjects walked in a hallway, while foot proprioception was either perturbed by vibration or unperturbed. At unpredictable intervals, they were prompted to turn their head and perform a mental-rotation task. We found that locomotion of young subjects was not affected by this distracter task with or without vibration. In contrast, seniors moved their legs after the distraction at a slower pace through smaller angles and with a higher spatiotemporal variability; the magnitude of these changes was vibration independent. We conclude that the visual distracter task degraded the gait of elderly subjects but completely spared young ones, that this effect is not due to degraded proprioception, and that it rather might reflect the known decline of executive functions in the elderly

    Will We Do If We Can? Habitual Qualitative and Quantitative Physical Activity in Multi-Morbid, Older Persons with Cognitive Impairment

    Get PDF
    This study aimed to identify determinants of quantitative dimensions of physical activity (PA; duration, frequency, and intensity) in community-dwelling, multi-morbid, older persons with cognitive impairment (CI). In addition, qualitative and quantitative aspects of habitual PA have been described. Quantitative PA and qualitative gait characteristics while walking straight and while walking turns were documented by a validated, sensor-based activity monitor. Univariate and multiple linear regression analyses were performed to delineate associations of quantitative PA dimensions with qualitative characteristics of gait performance and further potential influencing factors (motor capacity measures, demographic, and health-related parameters). In 94 multi-morbid, older adults (82.3 ± 5.9 years) with CI (Mini-Mental State Examination score: 23.3 ± 2.4), analyses of quantitative and qualitative PA documented highly inactive behavior (89.6% inactivity) and a high incidence of gait deficits, respectively. The multiple regression models (adjusted R2^{2} = 0.395–0.679, all p < 0.001) identified specific qualitative gait characteristics as independent determinants for all quantitative PA dimensions, whereas motor capacity was an independent determinant only for the PA dimension duration. Demographic and health-related parameters were not identified as independent determinants. High associations between innovative, qualitative, and established, quantitative PA performances may suggest gait quality as a potential target to increase quantity of PA in multi-morbid, older persons

    Age-related decline of peripheral visual processing: the role of eye movements

    Get PDF
    Earlier work suggests that the area of space from which useful visual information can be extracted (useful field of view, UFoV) shrinks in old age. We investigated whether this shrinkage, documented previously with a visual search task, extends to a bimanual tracking task. Young and elderly subjects executed two concurrent tracking tasks with their right and left arms. The separation between tracking displays varied from 3 to 35 cm. Subjects were asked to fixate straight ahead (condition FIX) or were free to move their eyes (condition FREE). Eye position was registered. In FREE, young subjects tracked equally well at all display separations. Elderly subjects produced higher tracking errors, and the difference between age groups increased with display separation. Eye movements were comparable across age groups. In FIX, elderly and young subjects tracked less well at large display separations. Seniors again produced higher tracking errors in FIX, but the difference between age groups did not increase reliably with display separation. However, older subjects produced a substantial number of illicit saccades, and when the effect of those saccades was factored out, the difference between young and older subjects’ tracking did increase significantly with display separation in FIX. We conclude that the age-related shrinkage of UFoV, previously documented with a visual search task, is observable with a manual tracking task as well. Older subjects seem to partly compensate their deficit by illicit saccades. Since the deficit is similar in both conditions, it may be located downstream from the convergence of retinal and oculomotor signals

    Age-Related Deficits of Dual-Task Walking: A Review

    Get PDF
    This review summarizes our present knowledge about elderly people's problems with walking. We highlight the plastic changes in the brain that allow a partial compensation of these age-related deficits and discuss the associated costs and limitations. Experimental evidence for the crucial role of executive functions and working memory is presented, leading us to the hypothesis that it is difficult for seniors to coordinate two streams of visual information, one related to navigation through visually defined space, and the other to a visually demanding second task. This hypothesis predicts that interventions aimed at the efficiency of visuovisual coordination in the elderly will ameliorate their deficits in dual-task walking

    Discriminative validity of the lower and upper quarter Y balance test performance: a comparison between healthy trained and untrained youth

    No full text
    Background!#!The Lower (YBT-LQ) and Upper (YBT-UQ) Quarter Y Balance Test have been widely used for the assessment of dynamic balance and shoulder mobility/stability, respectively. However, investigations on the validity of the two tests in youth are lacking. Therefore, we performed two studies to determine discriminative validity of the YBT-LQ (study 1) and the YBT-UQ (study 2) in healthy youth.!##!Methods!#!Sixty-nine male soccer players (age: 14.4 ± 1.9 yrs) and 69 age-matched untrained male subjects (14.3 ± 1.6 yrs) participated in study 1 and 37 young swimmers (age: 12.3 ± 2.1 yrs) as well as 37 age-/sex-matched individuals (age: 12.5 ± 2.0 yrs) took part in study 2. Absolute (cm) and relative (% leg/arm length) maximal reach distances per reach direction and the composite score of the YBT-LQ/UQ were used as outcome measures. One-way analysis of variance and the receiver operator characteristic curve analysis (i.e., calculating the area under the curve [AUC]) were conducted to assess discriminative validity.!##!Results!#!Concerning the relative values, youth athletes showed significantly better YBT-LQ (study 1: p &amp;lt; 0.001, d = 0.86-1.21) and YBT-UQ (study 2: p &amp;lt; 0.001, d = 0.88-1.48) test performances compared to age- and sex-matched untrained subjects. Further, AUC-values indicated a chance of ≥74% (YBT-LQ) and ≥ 71% (YBT-UQ) to discriminate between youth athletes and controls. These findings were confirmed when using the absolute data for analysis.!##!Conclusions!#!According to our results, the YBT-LQ and the YBT-UQ seem to be useful test instruments to discriminate trained and untrained healthy youth performance for dynamic balance and shoulder mobility/stability, respectively

    Effects of Supervised vs. Unsupervised Training Programs on Balance and Muscle Strength in Older Adults:A Systematic Review and Meta-Analysis

    Get PDF
    Background Balance and resistance training can improve healthy older adults' balance and muscle strength. Delivering such exercise programs at home without supervision may facilitate participation for older adults because they do not have to leave their homes. To date, no systematic literature analysis has been conducted to determine if supervision affects the effectiveness of these programs to improve healthy older adults' balance and muscle strength/ power. Objectives The objective of this systematic review and meta-analysis was to quantify the effectiveness of supervised vs. unsupervised balance and/or resistance training programs on measures of balance and muscle strength/ power in healthy older adults. In addition, the impact of supervision on training-induced adaptive processes was evaluated in the form of dose-response relationships by analyzing randomized controlled trials that compared supervised with unsupervised trials. Data Sources A computerized systematic literature search was performed in the electronic databases PubMed, Web of Science, and SportDiscus to detect articles examining the role of supervision in balance and/or resistance training in older adults. Study Eligibility Criteria The initially identified 6041 articles were systematically screened. Studies were included if they examined balance and/or resistance training in adults aged >= 65 years with no relevant diseases and registered at least one behavioral balance (e.g., time during single leg stance) and/or muscle strength/ power outcome (e.g., time for 5-Times-Chair-Rise-Test). Finally, 11 studies were eligible for inclusion in this meta-analysis. Study Appraisal Weighted mean standardized mean differences between subjects (SMDbs) of supervised vs. unsupervised balance/resistance training studies were calculated. The included studies were coded for the following variables: number of participants, sex, age, number and type of interventions, type of balance/strength tests, and change (%) from pre- to post-intervention values. Additionally, we coded training according to the following modalities: period, frequency, volume, modalities of supervision (i.e., number of supervised/unsupervised sessions within the supervised or unsupervised training groups, respectively). Heterogeneity was computed using I 2 and chi(2) statistics. The methodological quality of the included studies was evaluated using the Physiotherapy Evidence Database scale. Results Our analyses revealed that in older adults, supervised balance/resistance training was superior compared with unsupervised balance/resistance training in improving measures of static steady-state balance (mean SMDbs = 0.28, p = 0.39), dynamic steady-state balance (mean SMDbs = 0.35, p = 0.02), proactive balance (mean SMDbs = 0.24, p = 0.05), balance test batteries (mean SMDbs = 0.53, p = 0.02), and measures of muscle strength/power (mean SMDbs = 0.51, p = 0.04). Regarding the examined dose-response relationships, our analyses showed that a number of 10-29 additional supervised sessions in the supervised training groups compared with the unsupervised training groups resulted in the largest effects for static steady-state balance (mean SMDbs = 0.35), dynamic steady-state balance (mean SMDbs = 0.37), and muscle strength/power (mean SMDbs = 1.12). Further, >= 30 additional supervised sessions in the supervised training groups were needed to produce the largest effects on proactive balance (mean SMDbs = 0.30) and balance test batteries (mean SMDbs = 0.77). Effects in favor of supervised programs were larger for studies that did not include any supervised sessions in their unsupervised programs (mean SMDbs: 0.28-1.24) compared with studies that implemented a few supervised sessions in their unsupervised programs (e.g., three supervised sessions throughout the entire intervention program; SMDbs: -0.06 to 0.41). Limitations The present findings have to be interpreted with caution because of the low number of eligible studies and the moderate methodological quality of the included studies, which is indicated by a median Physiotherapy Evidence Database scale score of 5. Furthermore, we indirectly compared dose-response relationships across studies and not from single controlled studies. Conclusions Our analyses suggest that supervised balance and/or resistance training improved measures of balance and muscle strength/power to a greater extent than unsupervised programs in older adults. Owing to the small number of available studies, we were unable to establish a clear dose-response relationship with regard to the impact of supervision. However, the positive effects of supervised training are particularly prominent when compared with completely unsupervised training programs. It is therefore recommended to include supervised sessions (i.e., two out of three sessions/week) in balance/resistance training programs to effectively improve balance and muscle strength/power in older adults

    Cognitive and motor task performance under single- and dual-task conditions: effects of consecutive versus concurrent practice

    No full text
    The concurrent execution of two or more tasks simultaneously results in performance decrements in one or both conducted tasks. The practice of dual-task (DT) situations has been shown to decrease performance decrements. The purpose of this study was to investigate the effects of consecutive versus concurrent practice on cognitive and motor task performance under single-task (ST) and DT conditions. Forty-five young adults (21 females, 24 males) were randomly assigned to either a consecutive practice (INT consecutive) group, a concurrent practice (INT concurrent) group or a control (CON) group (i.e., no practice). Both INT groups performed 2 days of acquisition, i.e., practicing a cognitive and a motor task either consecutively or concurrently. The cognitive task required participants to perform an auditory stroop task and the number of correct responses was used as outcome measure. In the motor task, participants were asked to stand on a stabilometer and to keep the platform as close to horizontal as possible. The time in balance was calculated for further analysis. Pre- and post-practice testing included performance assessment under ST (i.e., cognitive task only, motor task only) and DT (i.e., cognitive and motor task simultaneously) test conditions. Pre-practice testing revealed no significant group differences under ST and DT test conditions neither for the cognitive nor the motor task measure. During acquisition, both INT groups improved their cognitive and motor task performance. The post-practice testing showed significantly better cognitive and motor task values under ST and DT test conditions for the two INT groups compared to the CON group. Further comparisons between the two INT groups revealed better motor but not cognitive task values in favor of the INT consecutive practice group (ST: p = 0.022; DT: p = 0.002). We conclude that consecutive and concurrent practice resulted in better cognitive (ST condition) and motor (ST and DT test conditions) task performance than no practice. In addition, consecutive practice resulted in superior motor task performance (ST and DT test conditions) compared to concurrent practice and is, therefore, recommended when executing DT practice schedules
    corecore