34 research outputs found

    NF-κB and its role in checkpoint control

    Get PDF
    Nuclear factor-κB (NF-κB) has been described as one of the most important molecules linking inflammation to cancer. More recently, it has become clear that NF-κB is also involved in the regulation of immune checkpoint expression. Therapeutic approaches targeting immune checkpoint molecules, enabling the immune system to initiate immune responses against tumor cells, constitute a key breakthrough in cancer treatment. This review discusses recent evidence for an association of NF-κB and immune checkpoint expression and examines the therapeutic potential of inhibitors targeting either NF-κB directly or molecules involved in NF-κB regulation in combination with immune checkpoint blockade

    Exploring the dual role of B cells in solid tumors: implications for head and neck squamous cell carcinoma

    Get PDF
    In the tumor milieu of head and neck squamous cell carcinoma (HNSCC), distinct B cell subpopulations are present, which exert either pro- or anti-tumor activities. Multiple factors, including hypoxia, cytokines, interactions with tumor cells, and other immune infiltrating lymphocytes (TILs), alter the equilibrium between the dual roles of B cells leading to cancerogenesis. Certain B cell subsets in the tumor microenvironment (TME) exhibit immunosuppressive function. These cells are known as regulatory B (Breg) cells. Breg cells suppress immune responses by secreting a series of immunosuppressive cytokines, including IL-10, IL-35, TGF-β, granzyme B, and adenosine or dampen effector TILs by intercellular contacts. Multiple Breg phenotypes have been discovered in human and mouse cancer models. However, when compartmentalized within a tertiary lymphoid structure (TLS), B cells predominantly play anti-tumor effects. A mature TLS contains a CD20+ B cell zone with several important types of B cells, including germinal-center like B cells, antibody-secreting plasma cells, and memory B cells. They kill tumor cells via antibody-dependent cytotoxicity and phagocytosis, and local complement activation effects. TLSs are also privileged sites for local T and B cell coordination and activation. Nonetheless, in some cases, TLSs may serve as a niche for hidden tumor cells and indicate a bad prognosis. Thus, TIL-B cells exhibit bidirectional immune-modulatory activity and are responsive to a variety of immunotherapies. In this review, we discuss the functional distinctions between immunosuppressive Breg cells and immunogenic effector B cells that mature within TLSs with the focus on tumors of HNSCC patients. Additionally, we review contemporary immunotherapies that aim to target TIL-B cells. For the development of innovative therapeutic approaches to complement T-cell-based immunotherapy, a full understanding of either effector B cells or Breg cells is necessary

    BTK isoforms p80 and p65 are expressed in head and neck squamous cell carcinoma (HNSCC) and involved in tumor progression

    Get PDF
    Here, we describe the expression of Bruton’s Tyrosine Kinase (BTK) in head and neck squamous cell carcinoma (HNSCC) cell lines as well as in primary HNSCC samples. BTK is a kinase initially thought to be expressed exclusively in cells of hematopoietic origin. Apart from the 77 kDa BTK isoform expressed in immune cells, particularly in B cells, we identified the 80 kDa and 65 kDa BTK isoforms in HNSCC, recently described as oncogenic. Importantly, we revealed that both isoforms are products of the same mRNA. By investigating the mechanism regulating oncogenic BTK-p80/p65 expression in HNSSC versus healthy or benign tissues, our data suggests that the epigenetic process of methylation might be responsible for the initiation of BTK-p80/p65 expression in HNSCC. Our findings demonstrate that chemical or genetic abrogation of BTK activity leads to inhibition of tumor progression in terms of proliferation and vascularization in vitro and in vivo. These observations were associated with cell cycle arrest and increased apoptosis and autophagy. Together, these data indicate BTK-p80 and BTK-p65 as novel HNSCC-associated oncogenes. Owing to the fact that abundant BTK expression is a characteristic feature of primary and metastatic HNSCC, targeting BTK activity appears as a promising therapeutic option for HNSCC patients

    Mutations in GABRB3

    Get PDF
    Objective: To examine the role of mutations in GABRB3 encoding the b3 subunit of the GABAA receptor in individual patients with epilepsy with regard to causality, the spectrum of genetic variants, their pathophysiology, and associated phenotypes. Methods: We performed massive parallel sequencing of GABRB3 in 416 patients with a range of epileptic encephalopathies and childhood-onset epilepsies and recruited additional patients with epilepsy with GABRB3 mutations from other research and diagnostic programs. Results: We identified 22 patients with heterozygous mutations in GABRB3, including 3 probands frommultiplex families. The phenotypic spectrum of the mutation carriers ranged from simple febrile seizures, genetic epilepsies with febrile seizures plus, and epilepsy withmyoclonic-atonic seizures to West syndrome and other types of severe, early-onset epileptic encephalopathies. Electrophysiologic analysis of 7 mutations in Xenopus laevis oocytes, using coexpression of wild-type or mutant beta(3), together with alpha(5) and gamma(2s) subunits and an automated 2-microelectrode voltage-clamp system, revealed reduced GABA-induced current amplitudes or GABA sensitivity for 5 of 7 mutations. Conclusions: Our results indicate that GABRB3 mutations are associated with a broad phenotypic spectrum of epilepsies and that reduced receptor function causing GABAergic disinhibition represents the relevant disease mechanism

    Clinical and electrophysiological features of SCN8A variants causing episodic or chronic ataxia

    Get PDF
    BACKGROUND: Variants in SCN8A are associated with a spectrum of epilepsies and neurodevelopmental disorders. Ataxia as a predominant symptom of SCN8A variation has not been well studied. We set out to investigate disease mechanisms and genotype-phenotype correlations of SCN8A-related ataxia. METHODS: We collected genetic and electro-clinical data of ten individuals from nine unrelated families carrying novel SCN8A variants associated with chronic progressive or episodic ataxia. Electrophysiological characterizations of these variants were performed in ND7/23 cells and cultured neurons. FINDINGS: Variants associated with chronic progressive ataxia either decreased Na + current densities and shifted activation curves towards more depolarized potentials (p.Asn995Asp, p.Lys1498Glu and p.Trp1266Cys) or resulted in a premature stop codon (p.Trp937Ter). Three variants (p.Arg847Gln and biallelic p.Arg191Trp/p.Asp1525Tyr) were associated with episodic ataxia causing loss-of-function by decreasing Na + current densities or a hyperpolarizing shift of the inactivation curve. Two additional episodic ataxia-associated variants caused mixed gain- and loss-of function effects in ND7/23 cells and were further examined in primary murine hippocampal neuronal cultures. Neuronal firing in excitatory neurons was increased by p.Arg1629His, but decreased by p.Glu1201Lys. Neuronal firing in inhibitory neurons was decreased for both variants. No functional effect was observed for p.Arg1913Trp. In four individuals, treatment with sodium channel blockers exacerbated symptoms. INTERPRETATION: We identified episodic or chronic ataxia as predominant phenotypes caused by variants in SCN8A. Genotype-phenotype correlations revealed a more pronounced loss-of-function effect for variants causing chronic ataxia. Sodium channel blockers should be avoided under these conditions. FUNDING: BMBF, DFG, the Italian Ministry of Health, University of Tuebingen

    Epilepsy in Nicolaides-Baraitser Syndrome: Review of Literature and Report of 25 Patients Focusing on Treatment Aspects

    No full text
    Nicolaides-Baraitser syndrome (NCBRS), caused by a mutation in the SMARCA2 gene, which goes along with intellectual disability, congenital malformations, especially of face and limbs, and often difficult-to-treat epilepsy, is surveyed focusing on epilepsy and its treatment. Patients were recruited via Network Therapy of Rare Epilepsies (NETRE) and an international NCBRS parent support group. Inclusion criterion is NCBRS-defining SMARCA2 mutation. Clinical findings including epilepsy classification, anticonvulsive treatment, electroencephalogram (EEG) findings, and neurodevelopmental outcome were collected with an electronic questionnaire. Inclusion of 25 NCBRS patients with epilepsy in 23 of 25. Overall, 85% of the participants (17/20) reported generalized seizures, the semiology varied widely. EEG showed generalized epileptogenic abnormalities in 53% (9/17), cranial magnetic resonance imaging (cMRI) was mainly inconspicuous. The five most frequently used anticonvulsive drugs were valproic acid (VPA [12/20]), levetiracetam (LEV [12/20]), phenobarbital (PB [8/20]), topiramate (TPM [5/20]), and carbamazepine (CBZ [5/20]). LEV (9/12), PB (6/8), TPM (4/5), and VPA (9/12) reduced the seizures' frequency in more than 50%. Temporary freedom of seizures (>6 months) was reached with LEV (4/12), PB (3/8), TPM (1/5, only combined with PB and nitrazepam [NZP]), and VPA (4/12). Seizures aggravation was observed under lamotrigine (LTG [2/4]), LEV (1/12), PB (1/8), and VPA (1/12). Ketogenic diet (KD) and vagal nerve stimulation (VNS) reduced seizures' frequency in one of two each. This first worldwide retrospective analysis of anticonvulsive therapy in NCBRS helps to treat epilepsy in NCBRS that mostly shows only initial response to anticonvulsive therapy, especially with LEV and VPA, but very rarely shows complete freedom of seizures in this, rather genetic than structural epilepsy

    Epilepsy in Nicolaides-Baraitser Syndrome: Review of Literature and Report of 25 Patients Focusing on Treatment Aspects

    No full text
    14noneNicolaides-Baraitser syndrome (NCBRS), caused by a mutation in the SMARCA2 gene, which goes along with intellectual disability, congenital malformations, especially of face and limbs, and often difficult-to-treat epilepsy, is surveyed focusing on epilepsy and its treatment. Patients were recruited via Network Therapy of Rare Epilepsies (NETRE) and an international NCBRS parent support group. Inclusion criterion is NCBRS-defining SMARCA2 mutation. Clinical findings including epilepsy classification, anticonvulsive treatment, electroencephalogram (EEG) findings, and neurodevelopmental outcome were collected with an electronic questionnaire. Inclusion of 25 NCBRS patients with epilepsy in 23 of 25. Overall, 85% of the participants (17/20) reported generalized seizures, the semiology varied widely. EEG showed generalized epileptogenic abnormalities in 53% (9/17), cranial magnetic resonance imaging (cMRI) was mainly inconspicuous. The five most frequently used anticonvulsive drugs were valproic acid (VPA [12/20]), levetiracetam (LEV [12/20]), phenobarbital (PB [8/20]), topiramate (TPM [5/20]), and carbamazepine (CBZ [5/20]). LEV (9/12), PB (6/8), TPM (4/5), and VPA (9/12) reduced the seizures' frequency in more than 50%. Temporary freedom of seizures (>6 months) was reached with LEV (4/12), PB (3/8), TPM (1/5, only combined with PB and nitrazepam [NZP]), and VPA (4/12). Seizures aggravation was observed under lamotrigine (LTG [2/4]), LEV (1/12), PB (1/8), and VPA (1/12). Ketogenic diet (KD) and vagal nerve stimulation (VNS) reduced seizures' frequency in one of two each. This first worldwide retrospective analysis of anticonvulsive therapy in NCBRS helps to treat epilepsy in NCBRS that mostly shows only initial response to anticonvulsive therapy, especially with LEV and VPA, but very rarely shows complete freedom of seizures in this, rather genetic than structural epilepsy.noneHofmeister B.; Von Stulpnagel C.; Betzler C.; Mari F.; Renieri A.; Baldassarri M.; Haberlandt E.; Jansen K.; Schilling S.; Weber P.; Ahlbory K.; Tang S.; Berweck S.; Kluger G.Hofmeister, B.; Von Stulpnagel, C.; Betzler, C.; Mari, F.; Renieri, A.; Baldassarri, M.; Haberlandt, E.; Jansen, K.; Schilling, S.; Weber, P.; Ahlbory, K.; Tang, S.; Berweck, S.; Kluger, G

    Epilepsy in Nicolaides–Baraitser Syndrome: Review of Literature and Report of 25 Patients Focusing on Treatment Aspects

    No full text
    Nicolaides-Baraitser syndrome (NCBRS), caused by a mutation in the SMARCA2 gene, which goes along with intellectual disability, congenital malformations, especially of face and limbs, and often difficult-to-treat epilepsy, is surveyed focusing on epilepsy and its treatment. Patients were recruited via "Network Therapy of Rare Epilepsies (NETRE)" and an international NCBRS parent support group. Inclusion criterion is NCBRS-defining SMARCA2 mutation. Clinical findings including epilepsy classification, anticonvulsive treatment, electroencephalogram (EEG) findings, and neurodevelopmental outcome were collected with an electronic questionnaire. Inclusion of 25 NCBRS patients with epilepsy in 23 of 25. Overall, 85% of the participants (17/20) reported generalized seizures, the semiology varied widely. EEG showed generalized epileptogenic abnormalities in 53% (9/17), cranial magnetic resonance imaging (cMRI) was mainly inconspicuous. The five most frequently used anticonvulsive drugs were valproic acid (VPA [12/20]), levetiracetam (LEV [12/20]), phenobarbital (PB [8/20]), topiramate (TPM [5/20]), and carbamazepine (CBZ [5/20]). LEV (9/12), PB (6/8), TPM (4/5), and VPA (9/12) reduced the seizures' frequency in more than 50%. Temporary freedom of seizures (>6 months) was reached with LEV (4/12), PB (3/8), TPM (1/5, only combined with PB and nitrazepam [NZP]), and VPA (4/12). Seizures aggravation was observed under lamotrigine (LTG [2/4]), LEV (1/12), PB (1/8), and VPA (1/12). Ketogenic diet (KD) and vagal nerve stimulation (VNS) reduced seizures' frequency in one of two each. This first worldwide retrospective analysis of anticonvulsive therapy in NCBRS helps to treat epilepsy in NCBRS that mostly shows only initial response to anticonvulsive therapy, especially with LEV and VPA, but very rarely shows complete freedom of seizures in this, rather genetic than structural epilepsy

    Clinical features and blood iron metabolism markers in children with beta-propeller protein associated neurodegeneration

    No full text
    Background: Neurodegeneration with brain iron accumulation constitutes a group of rare progressive movement disorders sharing intellectual disability and neuroimaging findings as common denominators. Beta-propeller protein-associated neurodegeneration (BPAN) represents approximately 7% of the cases, and its first signs are typically epilepsy and developmental delay. We aimed to describe in detail the phenotype of BPAN with a special focus on iron metabolism. Material and methods: We present a cohort of paediatric patients with pathogenic variants of WD-Repeat Domain 45 gene (WDR45). The diagnosis was established by targeted panel sequencing of genes associated with epileptic encephalopathies (n = 9) or by Sanger sequencing of WDR45 (n = 1). Data on clinical characteristics, molecular-genetic findings and other performed investigations were gathered from all participating centres. Markers of iron metabolism were analysed in 6 patients. Results: Ten children (3 males, 7 females, median age 8.4 years) from five centres (Prague, Berlin, Vogtareuth, Tubingen and Cologne) were enrolled in the study. All patients manifested first symptoms (e.g. epilepsy, developmental delay) between 2 and 31 months (median 16 months). Seven patients were seizure-free (6 on antiepileptic medication, one drug-free) at the time of data collection. Neurological findings were non-specific with deep tendon hyperreflexia (n = 4) and orofacial dystonia (n = 3) being the most common. Soluble transferrin receptor/log ferritin ratio was elevated in 5/6 examined subjects; other parameters of iron metabolism were normal. Conclusion: Severity of epilepsy often gradually decreases in BPAN patients. Elevation of soluble transferrin receptor/log ferritin ratio could be another biochemical marker of the disease and should be explored by further studies. (c) 2020 European Paediatric Neurology Society. Published by Elsevier Ltd. All rights reserved

    INHBA is Enriched in HPV-negative Oropharyngeal Squamous Cell Carcinoma and Promotes Cancer Progression.

    No full text
    Patients with oropharyngeal squamous cell carcinoma (OPSCC) caused by human papilloma virus (HPV) exhibit a better prognosis than those with HPV-negative OPSCC. This study investigated the distinct molecular pathways that delineate HPV-negative from HPV-positive OPSCC to identify biologically relevant therapeutic targets. Bulk mRNA from 23 HPV-negative and 39 HPV-positive OPSCC tumors (n = 62) was sequenced to uncover the transcriptomic profiles. Differential expression followed by gene set enrichment analysis was performed to outline the top enriched biological process in the HPV-negative compared with HPV-positive entity. INHBA, the highest overexpressed gene in the HPV-negative tumor, was knocked down. Functional assays (migration, proliferation, cell death, stemness) were conducted to confirm the target's oncogenic role. Correlation analyses to reveal its impact on the tumor microenvironment were performed. We revealed that epithelial-to-mesenchymal transition (EMT) is the most enriched process in HPV-negative compared with HPV-positive OPSCC, with INHBA (inhibin beta A subunit) being the top upregulated gene. INHBA knockdown downregulated the expression of EMT transcription factors and attenuated migration, proliferation, stemness, and cell death resistance of OPSCC cells. We uncovered that INHBA associates with a pro-tumor microenvironment by negatively correlating with antitumor CD8+ T and B cells while positively correlating with pro-tumor M1 macrophages. We identified three miRNAs that are putatively involved in repressing INHBA expression. Our results indicate that the upregulation of INHBA is tumor-promoting. We propose INHBA as an attractive therapeutic target for the treatment of INHBA-enriched tumors in patients with HPV-negative OPSCC to ameliorate prognosis.SignificancePatients with HPV-negative OPSCC have a poorer prognosis due to distinct molecular pathways. This study reveals significant transcriptomic differences between HPV-negative and HPV-positive OPSCC, identifying INHBA as a key upregulated gene in HPV-negative OPSCC's oncogenic pathways. INHBA is crucial in promoting EMT, cell proliferation, and an immunosuppressive tumor environment, suggesting its potential as a therapeutic target for HPV-negative OPSCC
    corecore