4 research outputs found

    Evaluation of Phage Therapy in the Context of Enterococcus faecalis and Its Associated Diseases

    Get PDF
    peer-reviewedBacteriophages (phages) or bacterial viruses have been proposed as natural antimicrobial agents to fight against antibiotic-resistant bacteria associated with human infections. Enterococcus faecalis is a gut commensal, which is occasionally found in the mouth and vaginal tract, and does not usually cause clinical problems. However, it can spread to other areas of the body and cause life-threatening infections, such as septicemia, endocarditis, or meningitis, in immunocompromised hosts. Although E. faecalis phage cocktails are not commercially available within the EU or USA, there is an accumulated evidence from in vitro and in vivo studies that have shown phage efficacy, which supports the idea of applying phage therapy to overcome infections associated with E. faecalis. In this review, we discuss the potency of bacteriophages in controlling E. faecalis, in both in vitro and in vivo scenarios. E. faecalis associated bacteriophages were compared at the genome level and an attempt was made to categorize phages with respect to their suitability for therapeutic application, using orthocluster analysis. In addition, E. faecalis phages have been examined for the presence of antibiotic-resistant genes, to ensure their safe use in clinical conditions. Finally, the domain architecture of E. faecalis phage-encoded endolysins are discussed

    Impact of a phage cocktail targeting Escherichia coli and Enterococcus faecalis as members of a gut bacterial consortium in vitro and in vivo

    Get PDF
    Escherichia coli and Enterococcus faecalis have been implicated as important players in human gut health that have been associated with the onset of inflammatory bowel disease (IBD). Bacteriophage (phage) therapy has been used for decades to target pathogens as an alternative to antibiotics, but the ability of phage to shape complex bacterial consortia in the lower gastrointestinal tract is not clearly understood. We administered a cocktail of six phages (either viable or heat-inactivated) targeting pro-inflammatory Escherichia coli LF82 and Enterococcus faecalis OG1RF as members of a defined community in both a continuous fermenter and a murine colitis model. The two target strains were members of a six species simplified human microbiome consortium (SIHUMI-6). In a 72-h continuous fermentation, the phage cocktail caused a 1.1 and 1.5 log (log10 genome copies/mL) reduction in E. faecalis and E. coli numbers, respectively. This interaction was accompanied by changes in the numbers of other SIHUMI-6 members, with an increase of Lactiplantibacillus plantarum (1.7 log) and Faecalibacterium prausnitzii (1.8 log). However, in germ-free mice colonized by the same bacterial consortium, the same phage cocktail administered twice a week over nine weeks did not cause a significant reduction of the target strains. Mice treated with active or inactive phage had similar levels of pro-inflammatory cytokines (IFN-y/IL12p40) in unstimulated colorectal colonic strip cultures. However, histology scores of the murine lower GIT (cecum and distal colon) were lower in the viable phage-treated mice, suggesting that the phage cocktail did influence the functionality of the SIHUMI-6 consortium. For this study, we conclude that the observed potential of phages to reduce host populations in in vitro models did not translate to a similar outcome in an in vivo setting, with this effect likely brought about by the reduction of phage numbers during transit of the mouse GIT

    Evaluation of Phage Therapy in the Context of Enterococcus faecalis and Its Associated Diseases

    No full text
    Bacteriophages (phages) or bacterial viruses have been proposed as natural antimicrobial agents to fight against antibiotic-resistant bacteria associated with human infections. Enterococcus faecalis is a gut commensal, which is occasionally found in the mouth and vaginal tract, and does not usually cause clinical problems. However, it can spread to other areas of the body and cause life-threatening infections, such as septicemia, endocarditis, or meningitis, in immunocompromised hosts. Although E. faecalis phage cocktails are not commercially available within the EU or USA, there is an accumulated evidence from in vitro and in vivo studies that have shown phage efficacy, which supports the idea of applying phage therapy to overcome infections associated with E. faecalis. In this review, we discuss the potency of bacteriophages in controlling E. faecalis, in both in vitro and in vivo scenarios. E. faecalis associated bacteriophages were compared at the genome level and an attempt was made to categorize phages with respect to their suitability for therapeutic application, using orthocluster analysis. In addition, E. faecalis phages have been examined for the presence of antibiotic-resistant genes, to ensure their safe use in clinical conditions. Finally, the domain architecture of E. faecalis phage-encoded endolysins are discussed
    corecore