302 research outputs found
A Framework for Algorithm Stability
We say that an algorithm is stable if small changes in the input result in
small changes in the output. This kind of algorithm stability is particularly
relevant when analyzing and visualizing time-varying data. Stability in general
plays an important role in a wide variety of areas, such as numerical analysis,
machine learning, and topology, but is poorly understood in the context of
(combinatorial) algorithms. In this paper we present a framework for analyzing
the stability of algorithms. We focus in particular on the tradeoff between the
stability of an algorithm and the quality of the solution it computes. Our
framework allows for three types of stability analysis with increasing degrees
of complexity: event stability, topological stability, and Lipschitz stability.
We demonstrate the use of our stability framework by applying it to kinetic
Euclidean minimum spanning trees
On the Number of Pseudo-Triangulations of Certain Point Sets
We pose a monotonicity conjecture on the number of pseudo-triangulations of
any planar point set, and check it on two prominent families of point sets,
namely the so-called double circle and double chain. The latter has
asymptotically pointed pseudo-triangulations, which lies
significantly above the maximum number of triangulations in a planar point set
known so far.Comment: 31 pages, 11 figures, 4 tables. Not much technical changes with
respect to v1, except some proofs and statements are slightly more precise
and some expositions more clear. This version has been accepted in J. Combin.
Th. A. The increase in number of pages from v1 is mostly due to formatting
the paper with "elsart.cls" for Elsevie
Agglomerative Clustering of Growing Squares
We study an agglomerative clustering problem motivated by interactive glyphs
in geo-visualization. Consider a set of disjoint square glyphs on an
interactive map. When the user zooms out, the glyphs grow in size relative to
the map, possibly with different speeds. When two glyphs intersect, we wish to
replace them by a new glyph that captures the information of the intersecting
glyphs.
We present a fully dynamic kinetic data structure that maintains a set of
disjoint growing squares. Our data structure uses
space, supports queries in worst case time, and updates in
amortized time. This leads to an time
algorithm to solve the agglomerative clustering problem. This is a significant
improvement over the current best time algorithms.Comment: 14 pages, 7 figure
Locally Correct Frechet Matchings
The Frechet distance is a metric to compare two curves, which is based on
monotonous matchings between these curves. We call a matching that results in
the Frechet distance a Frechet matching. There are often many different Frechet
matchings and not all of these capture the similarity between the curves well.
We propose to restrict the set of Frechet matchings to "natural" matchings and
to this end introduce locally correct Frechet matchings. We prove that at least
one such matching exists for two polygonal curves and give an O(N^3 log N)
algorithm to compute it, where N is the total number of edges in both curves.
We also present an O(N^2) algorithm to compute a locally correct discrete
Frechet matching
Area-Universal Rectangular Layouts
A rectangular layout is a partition of a rectangle into a finite set of
interior-disjoint rectangles. Rectangular layouts appear in various
applications: as rectangular cartograms in cartography, as floorplans in
building architecture and VLSI design, and as graph drawings. Often areas are
associated with the rectangles of a rectangular layout and it might hence be
desirable if one rectangular layout can represent several area assignments. A
layout is area-universal if any assignment of areas to rectangles can be
realized by a combinatorially equivalent rectangular layout. We identify a
simple necessary and sufficient condition for a rectangular layout to be
area-universal: a rectangular layout is area-universal if and only if it is
one-sided. More generally, given any rectangular layout L and any assignment of
areas to its regions, we show that there can be at most one layout (up to
horizontal and vertical scaling) which is combinatorially equivalent to L and
achieves a given area assignment. We also investigate similar questions for
perimeter assignments. The adjacency requirements for the rectangles of a
rectangular layout can be specified in various ways, most commonly via the dual
graph of the layout. We show how to find an area-universal layout for a given
set of adjacency requirements whenever such a layout exists.Comment: 19 pages, 16 figure
Convex-Arc Drawings of Pseudolines
A weak pseudoline arrangement is a topological generalization of a line
arrangement, consisting of curves topologically equivalent to lines that cross
each other at most once. We consider arrangements that are outerplanar---each
crossing is incident to an unbounded face---and simple---each crossing point is
the crossing of only two curves. We show that these arrangements can be
represented by chords of a circle, by convex polygonal chains with only two
bends, or by hyperbolic lines. Simple but non-outerplanar arrangements
(non-weak) can be represented by convex polygonal chains or convex smooth
curves of linear complexity.Comment: 11 pages, 8 figures. A preliminary announcement of these results was
made as a poster at the 21st International Symposium on Graph Drawing,
Bordeaux, France, September 2013, and published in Lecture Notes in Computer
Science 8242, Springer, 2013, pp. 522--52
Non-Crossing Geometric Steiner Arborescences
Motivated by the question of simultaneous embedding of several flow maps, we consider the problem of drawing multiple geometric Steiner arborescences with no crossings in the rectilinear and in the angle-restricted setting. When terminal-to-root paths are allowed to turn freely, we show that two rectilinear Steiner arborescences have a non-crossing drawing if neither tree necessarily completely disconnects the other tree and if the roots of both trees are "free". If the roots are not free, then we can reduce the decision problem to 2SAT. If terminal-to-root paths are allowed to turn only at Steiner points, then it is NP-hard to decide whether multiple rectilinear Steiner arborescences have a non-crossing drawing. The setting of angle-restricted Steiner arborescences is more subtle than the rectilinear case. Our NP-hardness result extends, but testing whether there exists a non-crossing drawing if the roots of both trees are free requires additional conditions to be fulfilled
Brief Announcement: An Effective Geometric Communication Structure for Programmable Matter
The concept of programmable matter envisions a very large number of tiny and simple robot particles forming a smart material that can change its physical properties and shape based on the outcome of computation and movement performed by the individual particles in a concurrent manner. We use geometric insights to develop a new type of shortest path tree for programmable matter systems. Our feather trees utilize geometry to allow particles and information to traverse the programmable matter structure via shortest paths even in the presence of multiple overlapping trees
- …