4,027 research outputs found

    Spinning Solitons of a Modified Non-Linear Schroedinger equation

    Full text link
    We study soliton solutions of a modified non-linear Schroedinger (MNLS) equation. Using an Ansatz for the time and azimuthal angle dependence previously considered in the studies of the spinning Q-balls, we construct multi-node solutions of MNLS as well as spinning generalisations.Comment: 8 Revtex pages, 5 ps figures; v2: minor change

    Synthesis of liquid menthol by hydrogenation of dementholized peppermint oil over Ni catalysts

    Full text link
    Hydrogenation of (-)-menthone and (+)-isomenthone was studied at 2.7 MPa and 100 ºC. The objective was to produce a liquid menthol mixture rich in (-)-menthol from dementholized peppermint oil. Ni-based catalysts were tested and compared for this reaction: a) 6 and 12% Ni dispersed into a nonstoichiometric magnesium aluminate (Ni-Mg-Al) with spinel structure; b) Ni-Raney catalyst. Both types of catalysts were active for (-)-menthone and (+)-isomenthone hydrogenation. Lower conversion but higher selectivity to (-)-menthol was obtained with Ni-Mg-Al catalysts. However, they rapidly lost their activity. Instead Ni-Raney catalysts kept its original activity even after several hydrogenation runs

    Surface spin-flop transition in a uniaxial antiferromagnetic Fe/Cr superlattice induced by a magnetic field of arbitrary direction

    Full text link
    We studied the transition between the antiferromagnetic and the surface spin-flop phases of a uniaxial antiferromagnetic [Fe(14 \AA)/Cr(11 \AA]x20_{\rm x20} superlattice. For external fields applied parallel to the in-plane easy axis, the layer-by-layer configuration, calculated in the framework of a mean-field one-dimensional model, was benchmarked against published polarized neutron reflectivity data. For an in-plane field HH applied at an angle ψ0\psi \ne 0 with the easy axis, magnetometry shows that the magnetization MM vanishes at H=0, then increases slowly with increasing HH. At a critical value of HH, a finite jump in M(H)M(H) is observed for ψ<5o\psi<5^{\rm o}, while a smooth increase of MM vsvs HH is found for ψ>5o\psi>5^{\rm o}. A dramatic increase in the full width at half maximum of the magnetic susceptibility is observed for ψ5o\psi \ge 5^{\rm o}. The phase diagram obtained from micromagnetic calculations displays a first-order transition to a surface spin-flop phase for low ψ\psi values, while the transition becomes continuous for ψ\psi greater than a critical angle, ψmax4.75o\psi_{\rm max} \approx 4.75^{\rm o}. This is in fair agreement with the experimentally observed results.Comment: 24 pages, 7 figure

    Ocupação nodular com estirpes de Bradyrhizobium spp. em cultivares de soja sob diferentes disponibilidades hídricas a campo.

    Get PDF
    A ocupação nodular com estirpes de Bradyrhizobium spp. em cultivares de soja sob diferentes disponibilidades hídricas foi analisada na safra 2007/08 em Londrina-PR. O delineamento experimental utilizado foi o de blocos ao acaso com parcelas sub-divididas, com quatro repetições. As parcelas principais receberam três tratamentos (1- déficit hídrico nos estádios reprodutivos - DHER, 2- condições normais de campo - CNC e 3- condições ótimas de umidade - IRR); e as sub-parcelas, dez cultivares de soja. Os nódulos foram tipificados pelo método de ELISA, com anti-soros das estirpes SEMIA 5079, SEMIA 5080, SEMIA 587 e SEMIA 5019. Não houve diferença significativa para a ocupação nodular em relação à disponibilidade hídrica, porém, estes resultados podem estar relacionados ao fato da indução de déficit hídrico ter ocorrido na fase reprodutiva, quando a nodulação já estava estabelecida. As estirpes inoculadas, quando consideradas em conjunto, foram mais competitivas na nodulação do que as estirpes naturalizadas no solo, sendo a SEMIA 587 a que apresentou maior ocupação nodular. Não foi possível identificar uma estirpe mais tolerante ao déficit hídrico

    The Definition of Mach's Principle

    Full text link
    Two definitions of Mach's principle are proposed. Both are related to gauge theory, are universal in scope and amount to formulations of causality that take into account the relational nature of position, time, and size. One of them leads directly to general relativity and may have relevance to the problem of creating a quantum theory of gravity.Comment: To be published in Foundations of Physics as invited contribution to Peter Mittelstaedt's 80th Birthday Festschrift. 30 page

    Tachyons on Dp-branes from Abelian Higgs sphalerons

    Full text link
    We consider the Abelian Higgs model in a (p+2)-dimensional space time with topology M^{p+1} x S^1 as a field theoretical toy model for tachyon condensation on Dp-branes. The theory has periodic sphaleron solutions with the normal mode equations resembling Lame-type equations. These equations are quasi-exactly solvable (QES) for specific choices of the Higgs- to gauge boson mass ratio and hence a finite number of algebraic normal modes can be computed explicitely. We calculate the tachyon potential for two different values of the Higgs- to gauge boson mass ratio and show that in comparison to previously studied pure scalar field models an exact cancellation between the negative energy contribution at the minimum of the tachyon potential and the brane tension is possible for the simplest truncation in the expansion about the field around the sphaleron. This gives further evidence for the correctness of Sen's conjecture.Comment: 14 Latex pages including 3 eps-figure

    Static non-reciprocity in mechanical metamaterials

    Full text link
    Reciprocity is a fundamental principle governing various physical systems, which ensures that the transfer function between any two points in space is identical, regardless of geometrical or material asymmetries. Breaking this transmission symmetry offers enhanced control over signal transport, isolation and source protection. So far, devices that break reciprocity have been mostly considered in dynamic systems, for electromagnetic, acoustic and mechanical wave propagation associated with spatio-temporal variations. Here we show that it is possible to strongly break reciprocity in static systems, realizing mechanical metamaterials that, by combining large nonlinearities with suitable geometrical asymmetries, and possibly topological features, exhibit vastly different output displacements under excitation from different sides, as well as one-way displacement amplification. In addition to extending non-reciprocity and isolation to statics, our work sheds new light on the understanding of energy propagation in non-linear materials with asymmetric crystalline structures and topological properties, opening avenues for energy absorption, conversion and harvesting, soft robotics, prosthetics and optomechanics.Comment: 19 pages, 3 figures, Supplementary information (11 pages and 5 figures

    Shock Ignitiion: A New Approach to High Gain/Yield Targets for the National Ignition Facility

    Get PDF

    There is an obstetrical dilemma: Misconceptions about the evolution of human childbirth and pelvic form

    Get PDF
    Compared to other primates, modern humans face high rates of maternal and neonatal morbidity and mortality during childbirth. Since the early 20th century, this “difficulty” of human parturition has prompted numerous evolutionary explanations, typically assuming antagonistic selective forces acting on maternal and fetal traits, which has been termed the “obstetrical dilemma.” Recently, there has been a growing tendency among some anthropologists to question the difficulty of human childbirth and its evolutionary origin in an antagonistic selective regime. Partly, this stems from the motivation to combat increasing pathologization and overmedicalization of childbirth in industrialized countries. Some authors have argued that there is no obstetrical dilemma at all, and that the difficulty of childbirth mainly results from modern lifestyles and inappropriate and patriarchal obstetric practices. The failure of some studies to identify biomechanical and metabolic constraints on pelvic dimensions is sometimes interpreted as empirical support for discarding an obstetrical dilemma. Here we explain why these points are important but do not invalidate evolutionary explanations of human childbirth. We present robust empirical evidence and solid evolutionary theory supporting an obstetrical dilemma, yet one that is much more complex than originally conceived in the 20th century. We argue that evolutionary research does not hinder appropriate midwifery and obstetric care, nor does it promote negative views of female bodies. Understanding the evolutionary entanglement of biological and sociocultural factors underlying human childbirth can help us to understand individual variation in the risk factors of obstructed labor, and thus can contribute to more individualized maternal care
    corecore