936 research outputs found
Fermi Edge Resonances in Non-equilibrium States of Fermi Gases
We formulate the problem of the Fermi Edge Singularity in non-equilibrium
states of a Fermi gas as a matrix Riemann-Hilbert problem with an integrable
kernel. This formulation is the most suitable for studying the singular
behavior at each edge of non-equilibrium Fermi states by means of the method of
steepest descent, and also reveals the integrable structure of the problem. We
supplement this result by extending the familiar approach to the problem of the
Fermi Edge Singularity via the bosonic representation of the electronic
operators to non-equilibrium settings. It provides a compact way to extract the
leading asymptotes.Comment: Accepted for publication, J. Phys.
Orthogonality catastrophe and shock waves in a non-equilibrium Fermi gas
A semiclassical wave-packet propagating in a dissipationless Fermi gas
inevitably enters a "gradient catastrophe" regime, where an initially smooth
front develops large gradients and undergoes a dramatic shock wave phenomenon.
The non-linear effects in electronic transport are due to the curvature of the
electronic spectrum at the Fermi surface. They can be probed by a sudden
switching of a local potential. In equilibrium, this process produces a large
number of particle-hole pairs, a phenomenon closely related to the
Orthogonality Catastrophe. We study a generalization of this phenomenon to the
non-equilibrium regime and show how the Orthogonality Catastrophe cures the
Gradient Catastrophe, providing a dispersive regularization mechanism. We show
that a wave packet overturns and collapses into modulated oscillations with the
wave vector determined by the height of the initial wave. The oscillations
occupy a growing region extending forward with velocity proportional to the
initial height of the packet. We derive a fundamental equation for the
transition rates (MKP-equation) and solve it by means of the Whitham modulation
theory.Comment: 5 pages, 1 figure, revtex4, pr
Gradient Catastrophe and Fermi Edge Resonances in Fermi Gas
A smooth spatial disturbance of the Fermi surface in a Fermi gas inevitably
becomes sharp. This phenomenon, called {\it the gradient catastrophe}, causes
the breakdown of a Fermi sea to disconnected parts with multiple Fermi points.
We study how the gradient catastrophe effects probing the Fermi system via a
Fermi edge singularity measurement. We show that the gradient catastrophe
transforms the single-peaked Fermi-edge singularity of the tunneling (or
absorption) spectrum to a set of multiple asymmetric singular resonances. Also
we gave a mathematical formulation of FES as a matrix Riemann-Hilbert problem
Verocytotoxigenic Escherichia coli serologic responses in patients with hemolytic uremic syndrome
Copyright © 2008. University of Chicago Press. All rights reserved
An Escherichia coli O157 : H7 outbreak?
© 2000 by the Infectious Diseases Society of America. All rights reserved
SIDS risk factors: time for new interpretations. The role of bacteria
The aim of this paper is to help draw attention to perceived ideas regarding the risk factors and the implied pathogenesis of Sudden Infant Death Syndrome (SIDS), and SIDS research in general. Our paper shows there is little if any evidence to support the broadly held notion of an association between respiratory function and sudden infant death syndrome. Researchers who hold to this approach to explain the risk factors of bed-sharing and prone sleep position, etc. have failed to meet the standards of scientific endeavour that we would expect of good research. To counter this imbalance we have proposed an evidence-based explanation for SIDS risk factors showing that microbiological studies of SIDS corroborate epidemiologic and pathological data in establishing a plausible pathogenetic mechanism. We reviewed recent publications on current research and the epidemiology of SIDS and publications on the microbiology of SIDS. Conclusion: Comparison of the data presented, suggest that the risk factors of bed-sharing, and smoke exposure, prone sleep position and alcohol can be explained by the theories of a microbiological infection model of SIDS pathogenesis.Paul N. Goldwater and Karl A. Bettelhei
Quantum Shock Waves - the case for non-linear effects in dynamics of electronic liquids
Using the Calogero model as an example, we show that the transport in
interacting non-dissipative electronic systems is essentially non-linear.
Non-linear effects are due to the curvature of the electronic spectrum near the
Fermi energy. As is typical for non-linear systems, propagating wave packets
are unstable. At finite time shock wave singularities develop, the wave packet
collapses, and oscillatory features arise. They evolve into regularly
structured localized pulses carrying a fractionally quantized charge - {\it
soliton trains}. We briefly discuss perspectives of observation of Quantum
Shock Waves in edge states of Fractional Quantum Hall Effect and a direct
measurement of the fractional charge
Tip-splitting evolution in the idealized Saffman-Taylor problem
We derive a formula describing the evolution of tip-splittings of
Saffman-Taylor fingers in a Hele-Shaw cell, at zero surface tension
Singular limit of Hele-Shaw flow and dispersive regularization of shock waves
We study a family of solutions to the Saffman-Taylor problem with zero
surface tension at a critical regime. In this regime, the interface develops a
thin singular finger. The flow of an isolated finger is given by the Whitham
equations for the KdV integrable hierarchy. We show that the flow describing
bubble break-off is identical to the Gurevich-Pitaevsky solution for
regularization of shock waves in dispersive media. The method provides a scheme
for the continuation of the flow through singularites.Comment: Some typos corrected, added journal referenc
- …