A semiclassical wave-packet propagating in a dissipationless Fermi gas
inevitably enters a "gradient catastrophe" regime, where an initially smooth
front develops large gradients and undergoes a dramatic shock wave phenomenon.
The non-linear effects in electronic transport are due to the curvature of the
electronic spectrum at the Fermi surface. They can be probed by a sudden
switching of a local potential. In equilibrium, this process produces a large
number of particle-hole pairs, a phenomenon closely related to the
Orthogonality Catastrophe. We study a generalization of this phenomenon to the
non-equilibrium regime and show how the Orthogonality Catastrophe cures the
Gradient Catastrophe, providing a dispersive regularization mechanism. We show
that a wave packet overturns and collapses into modulated oscillations with the
wave vector determined by the height of the initial wave. The oscillations
occupy a growing region extending forward with velocity proportional to the
initial height of the packet. We derive a fundamental equation for the
transition rates (MKP-equation) and solve it by means of the Whitham modulation
theory.Comment: 5 pages, 1 figure, revtex4, pr