23 research outputs found

    Comparative SNP and Haplotype Analysis Reveals a Higher Genetic Diversity and Rapider LD Decay in Tropical than Temperate Germplasm in Maize

    Get PDF
    Understanding of genetic diversity and linkage disequilibrium (LD) decay in diverse maize germplasm is fundamentally important for maize improvement. A total of 287 tropical and 160 temperate inbred lines were genotyped with 1943 single nucleotide polymorphism (SNP) markers of high quality and compared for genetic diversity and LD decay using the SNPs and their haplotypes developed from genic and intergenic regions. Intronic SNPs revealed a substantial higher variation than exonic SNPs. The big window size haplotypes (3-SNP slide-window covering 2160 kb on average) revealed much higher genetic diversity than the 10 kb-window and gene-window haplotypes. The polymorphic information content values revealed by the haplotypes (0.436–0.566) were generally much higher than individual SNPs (0.247–0.259). Cluster analysis classified the 447 maize lines into two major groups, corresponding to temperate and tropical types. The level of genetic diversity and subpopulation structure were associated with the germplasm origin and post-domestication selection. Compared to temperate lines, the tropical lines had a much higher level of genetic diversity with no significant subpopulation structure identified. Significant variation in LD decay distance (2–100 kb) was found across the genome, chromosomal regions and germplasm groups. The average of LD decay distance (10–100 kb) in the temperate germplasm was two to ten times larger than that in the tropical germplasm (5–10 kb). In conclusion, tropical maize not only host high genetic diversity that can be exploited for future plant breeding, but also show rapid LD decay that provides more opportunity for selection

    Responses to reciprocal recurrent selection and changes in genetic variability in IG-1 and IG-2 maize populations

    No full text
    This paper reports the effects of three cycles of reciprocal recurrent selection (RRS) on the means, genetic variances, and on the genetic correlations for several traits in the IG-1 and IG-2 maize (Zea mays L.) populations. Interpopulation full-sib progenies from cycle zero (C0) and from cycle 3 (C3) of RRS were evaluated in two locations. RRS was highly effective to improve the traits according the objectives of the program: grain yield and prolificacy increased significantly, while plant height, ear height, and ear placement decreased significantly. Genetic variances for all traits decreased significantly from C0 to C3, but the genetic correlations did not change consistently across the cycles of selection. The expected responses to the fourth cycle of RRS and the probability of selecting double-crosses from C3 that outperform those from C0 showed that the decreases in the genetic variances were not great enough to limit the continued improvement of the populations as well as the use of the improved populations as sources of inbred lines to develop commercial hybrids. However, if the magnitudes of the genetic variances continue to decrease, new sources of improved germplasm should be incorporated into both populations to allow the continued improvement of the interpopulation by RRS

    Genome Wide Association Study for Drought, Aflatoxin Resistance, and Important Agronomic Traits of Maize Hybrids in the Sub-Tropics

    Get PDF
    <div><p>The primary maize (<i>Zea mays</i> L.) production areas are in temperate regions throughout the world and this is where most maize breeding is focused. Important but lower yielding maize growing regions such as the sub-tropics experience unique challenges, the greatest of which are drought stress and aflatoxin contamination. Here we used a diversity panel consisting of 346 maize inbred lines originating in temperate, sub-tropical and tropical areas testcrossed to stiff-stalk line Tx714 to investigate these traits. Testcross hybrids were evaluated under irrigated and non-irrigated trials for yield, plant height, ear height, days to anthesis, days to silking and other agronomic traits. Irrigated trials were also inoculated with <i>Aspergillus flavus</i> and evaluated for aflatoxin content. Diverse maize testcrosses out-yielded commercial checks in most trials, which indicated the potential for genetic diversity to improve sub-tropical breeding programs. To identify genomic regions associated with yield, aflatoxin resistance and other important agronomic traits, a genome wide association analysis was performed. Using 60,000 SNPs, this study found 10 quantitative trait variants for grain yield, plant and ear height, and flowering time after stringent multiple test corrections, and after fitting different models. Three of these variants explained 5–10% of the variation in grain yield under both water conditions. Multiple identified SNPs co-localized with previously reported QTL, which narrows the possible location of causal polymorphisms. Novel significant SNPs were also identified. This study demonstrated the potential to use genome wide association studies to identify major variants of quantitative and complex traits such as yield under drought that are still segregating between elite inbred lines.</p></div
    corecore