914 research outputs found

    Address by Hon. Thomas M. Cooley, and Poem by D. Bethune Duffield, Esq., on the Dedication of the Law Lecture Hall of the Michigan University

    Get PDF
    A stirring address by Professor Cooley upon the occasion of the dedication of the Law Lecture Hall of the first Law School Building. He begins: Students in the Department of Law: While Michigan was yet a wilderness, only feeling along its borders the advancing tread of civilization, and only hearing here and there the sound of the woodman\u27s axe, the wisdom of American statesmen made provision for the establishment in the territory of a great University...

    C1 inhibitor deficiency: 2014 United Kingdom consensus document

    Get PDF
    C1 inhibitor deficiency is a rare disorder manifesting with recurrent attacks of disabling and potentially life-threatening angioedema. Here we present an updated 2014 United Kingdom consensus document for the management of C1 inhibitor-deficient patients, representing a joint venture between the United Kingdom Primary Immunodeficiency Network and Hereditary Angioedema UK. To develop the consensus, we assembled a multi-disciplinary steering group of clinicians, nurses and a patient representative. This steering group first met in 2012, developing a total of 48 recommendations across 11 themes. The statements were distributed to relevant clinicians and a representative group of patients to be scored for agreement on a Likert scale. All 48 statements achieved a high degree of consensus, indicating strong alignment of opinion. The recommendations have evolved significantly since the 2005 document, with particularly notable developments including an improved evidence base to guide dosing and indications for acute treatment, greater emphasis on home therapy for acute attacks and a strong focus on service organisation. This article is protected by copyright. All rights reserved

    Autocompensating Quantum Cryptography

    Full text link
    Quantum cryptographic key distribution (QKD) uses extremely faint light pulses to carry quantum information between two parties (Alice and Bob), allowing them to generate a shared, secret cryptographic key. Autocompensating QKD systems automatically and passively compensate for uncontrolled time dependent variations of the optical fiber properties by coding the information as a differential phase between orthogonally-polarized components of a light pulse sent on a round trip through the fiber, reflected at mid-course using a Faraday mirror. We have built a prototype system based on standard telecom technology that achieves a privacy-amplified bit generation rate of ~1000 bits/s over a 10-km optical fiber link. Quantum cryptography is an example of an application that, by using quantum states of individual particles to represent information, accomplishes a practical task that is impossible using classical means.Comment: 18 pages, 6 figures, 1 table. Submitted to the New Journal of Physic

    Performance of various quantum key distribution systems using 1.55 um up-conversion single-photon detectors

    Full text link
    We compare the performance of various quantum key distribution (QKD) systems using a novel single-photon detector, which combines frequency up-conversion in a periodically poled lithium niobate (PPLN) waveguide and a silicon avalanche photodiode (APD). The comparison is based on the secure communication rate as a function of distance for three QKD protocols: the Bennett-Brassard 1984 (BB84), the Bennett, Brassard, and Mermin 1992 (BBM92), and the coherent differential phase shift keying (DPSK). We show that the up-conversion detector allows for higher communication rates and longer communication distances than the commonly used InGaAs/InP APD for all the three QKD protocols.Comment: 9 pages, 9 figure

    A high-performance integrated single-photon detector for telecom wavelengths

    Full text link
    We have integrated a commercial avalanche photodiode (APD) and the circuitry needed to operate it as a single-photon detector (SPD) onto a single PC-board. At temperatures accessible with Peltier coolers (~200-240K), the PCB-SPD achieves high detection efficiency (DE) at 1308 and 1545 nm with low dark count probability (e.g. ~10-6/bias pulse at DE=20%, 220 K), making it useful for quantum key distribution (QKD). The board generates fast bias pulses, cancels noise transients, amplifies the signals, and sends them to an on-board discriminator. A digital blanking circuit suppresses afterpulsing.Comment: (10 pages, 6 figures

    Practical quantum key distribution: On the security evaluation with inefficient single-photon detectors

    Full text link
    Quantum Key Distribution with the BB84 protocol has been shown to be unconditionally secure even using weak coherent pulses instead of single-photon signals. The distances that can be covered by these methods are limited due to the loss in the quantum channel (e.g. loss in the optical fiber) and in the single-photon counters of the receivers. One can argue that the loss in the detectors cannot be changed by an eavesdropper in order to increase the covered distance. Here we show that the security analysis of this scenario is not as easy as is commonly assumed, since already two-photon processes allow eavesdropping strategies that outperform the known photon-number splitting attack. For this reason there is, so far, no satisfactory security analysis available in the framework of individual attacks.Comment: 11 pages, 6 figures; Abstract and introduction extended, Appendix added, references update

    Theory of Spontaneous Polarization of Endohedral Fullerenes

    Full text link
    A pseudo-Jahn-Teller model describing central atom distortions is proposed for endohedral fullerenes of the form A@C60_{60} where A is either a rare gas or a metal atom. A critical (dimensionless) coupling gcg_c is found, below which the symmetric configuration is stable and above which inversion symmetry is broken. Vibronic parameters are given for selected endohedral fullerenes.Comment: 4 pages, REVTEX, 1 Postscript figure. [Phys. Rev. Lett. (in press)

    Order out of Randomness : Self-Organization Processes in Astrophysics

    Full text link
    Self-organization is a property of dissipative nonlinear processes that are governed by an internal driver and a positive feedback mechanism, which creates regular geometric and/or temporal patterns and decreases the entropy, in contrast to random processes. Here we investigate for the first time a comprehensive number of 16 self-organization processes that operate in planetary physics, solar physics, stellar physics, galactic physics, and cosmology. Self-organizing systems create spontaneous {\sl order out of chaos}, during the evolution from an initially disordered system to an ordered stationary system, via quasi-periodic limit-cycle dynamics, harmonic mechanical resonances, or gyromagnetic resonances. The internal driver can be gravity, rotation, thermal pressure, or acceleration of nonthermal particles, while the positive feedback mechanism is often an instability, such as the magneto-rotational instability, the Rayleigh-B\'enard convection instability, turbulence, vortex attraction, magnetic reconnection, plasma condensation, or loss-cone instability. Physical models of astrophysical self-organization processes involve hydrodynamic, MHD, and N-body formulations of Lotka-Volterra equation systems.Comment: 61 pages, 38 Figure
    • …
    corecore