336 research outputs found
Depinning of a vortex chain in a disordered flow channel
We study depinning of vortex chains in channels formed by static, disordered
vortex arrays. Depinning is governed either by the barrier for defect
nucleation or for defect motion, depending on whether the chain periodicity is
commensurate or incommensurate with the surrounding arrays. We analyze the
reduction of the gap between these barriers as function of disorder. At large
disorder, commensurability becomes irrelevant and the pinning force is reduced
to a small fraction of the ideal shear strength of ordered channels.
Implications for experiments on channel devices are discussed.Comment: 5 pages, 4 figures. Accepted for publication in Europhysics Letter
Dynamic melting of confined vortex matter
We study {\em dynamic} melting of confined vortex matter moving in
disordered, mesoscopic channels by mode-locking experiments. The dynamic
melting transition, characterized by a collapse of the mode-locking effect,
strongly depends on the frequency, i.e. on the average velocity of the
vortices. The associated dynamic ordering velocity diverges upon approaching
the equilibrium melting line as . The
data provide the first direct evidence for velocity dependent melting and show
that the phenomenon also takes place in a system under disordered confinement.
\pacs{74.25.Qt,83.50.Ha,64.70.Dv,64.60.Ht}Comment: Some small changes have been made. 4 pages, 4 figures included.
Accepted for publication in Phys. Rev. Let
Depinning and dynamics of vortices confined in mesoscopic flow channels
We study the behavior of vortex matter in artificial flow channels confined
by pinned vortices in the channel edges (CE's). The critical current is
governed by the interaction with static vortices in the CE's. We study
structural changes associated with (in)commensurability between the channel
width and the natural row spacing , and their effect on . The
behavior depends crucially on the presence of disorder in the CE arrays. For
ordered CE's, maxima in occur at matching ( integer), while
for defects along the CE's cause a vanishing . For weak CE
disorder, the sharp peaks in at become smeared via nucleation
and pinning of defects. The corresponding quasi-1D row configurations can
be described by a (disordered)sine-Gordon model. For larger disorder and
, levels at of the ideal lattice strength
. Around 'half filling' (), disorder causes new
features, namely {\it misaligned} defects and coexistence of and
rows in the channel. This causes a {\it maximum} in around mismatch,
while smoothly decreases towards matching due to annealing of the
misaligned regions. We study the evolution of static and dynamic structures on
changing , the relation between modulations of and transverse
fluctuations and dynamic ordering of the arrays. The numerical results at
strong disorder show good qualitative agreement with recent mode-locking
experiments.Comment: 29 pages, 32 figure
Vortex lattice dynamics in a-NbGe detected by mode-locking experiments
We observed mode-locking (ML) of rf-dc driven vortex arrays in a
superconducting weak pinning a-NbGe film. The ML voltage shows the expected
scaling with the rf-frequency and the magnetic
field. For large dc-velocity (corresponding to a large ML frequency), the ML
current step width exhibits a squared Bessel function dependence on the
rf-amplitude as predicted for ML of a lattice moving elastically through a
random potential.Comment: 2 pages, 2 figures. Contribution to M2S-HTSC Ri
Wall slip and flow of concentrated hard-sphere colloidal suspensions
We present a comprehensive study of the slip and flow of concentrated
colloidal suspensions using cone-plate rheometry and simultaneous confocal
imaging. In the colloidal glass regime, for smooth, non-stick walls, the solid
nature of the suspension causes a transition in the rheology from
Herschel-Bulkley (HB) bulk flow behavior at large stress to a Bingham-like slip
behavior at low stress, which is suppressed for sufficient colloid-wall
attraction or colloid-scale wall roughness. Visualization shows how the
slip-shear transition depends on gap size and the boundary conditions at both
walls and that partial slip persist well above the yield stress. A
phenomenological model, incorporating the Bingham slip law and HB bulk flow,
fully accounts for the behavior. Microscopically, the Bingham law is related to
a thin (sub-colloidal) lubrication layer at the wall, giving rise to a
characteristic dependence of slip parameters on particle size and
concentration. We relate this to the suspension's osmotic pressure and yield
stress and also analyze the influence of van der Waals interaction. For the
largest concentrations, we observe non-uniform flow around the yield stress, in
line with recent work on bulk shear-banding of concentrated pastes. We also
describe residual slip in concentrated liquid suspensions, where the vanishing
yield stress causes coexistence of (weak) slip and bulk shear flow for all
measured rates
Coherent and Incoherent Vortex Flow States in Crossed Channels
We examine vortex flow states in periodic square pinning arrays with one row
and one column of pinning sites removed to create an easy flow crossed channel
geometry. When a drive is simultaneously applied along both major symmetry axes
of the pinning array such that vortices move in both channels, a series of
coherent flow states develop in the channel intersection at rational ratios of
the drive components in each symmetry direction when the vortices can cross the
intersection without local collisions. The coherent flow states are correlated
with a series of anomalies in the velocity force curves, and in some cases can
produce negative differential conductivity. The same general behavior could
also be realized in other systems including colloids, particle traffic in
microfluidic devices, or Wigner crystals in crossed one-dimensional channels.Comment: 5 pages, 4 postscript figure
Single File Diffusion enhancement in a fluctuating modulated 1D channel
We show that the diffusion of a single file of particles moving in a
fluctuating modulated 1D channel is enhanced with respect to the one in a bald
pipe. This effect, induced by the fluctuations of the modulation, is favored by
the incommensurability between the channel potential modulation and the moving
file periodicity. This phenomenon could be of importance in order to optimize
the critical current in superconductors, in particular in the case where mobile
vortices move in 1D channels designed by adapted patterns of pinning sites.Comment: 4 pages, 4 figure
Mode locking of vortex matter driven through mesoscopic channels
We investigated the driven dynamics of vortices confined to mesoscopic flow
channels by means of a dc-rf interference technique. The observed mode-locking
steps in the -curves provide detailed information on how the number of rows
and lattice structure in the channel change with magnetic field. Minima in flow
stress occur when an integer number of rows is moving coherently, while maxima
appear when incoherent motion of mixed and row configurations is
predominant. Simulations show that the enhanced pinning at mismatch originates
from quasi-static fault zones with misoriented edge dislocations induced by
disorder in the channel edges.Comment: some minor changes were made, 4 pages, 4 figures, accepted for
publication in Phys. Rev. Let
- …