336 research outputs found

    Depinning of a vortex chain in a disordered flow channel

    Full text link
    We study depinning of vortex chains in channels formed by static, disordered vortex arrays. Depinning is governed either by the barrier for defect nucleation or for defect motion, depending on whether the chain periodicity is commensurate or incommensurate with the surrounding arrays. We analyze the reduction of the gap between these barriers as function of disorder. At large disorder, commensurability becomes irrelevant and the pinning force is reduced to a small fraction of the ideal shear strength of ordered channels. Implications for experiments on channel devices are discussed.Comment: 5 pages, 4 figures. Accepted for publication in Europhysics Letter

    Dynamic melting of confined vortex matter

    Get PDF
    We study {\em dynamic} melting of confined vortex matter moving in disordered, mesoscopic channels by mode-locking experiments. The dynamic melting transition, characterized by a collapse of the mode-locking effect, strongly depends on the frequency, i.e. on the average velocity of the vortices. The associated dynamic ordering velocity diverges upon approaching the equilibrium melting line Tm,e(B)T_{m,e}(B) as vc(Tm,eT)1v_c \sim (T_{m,e}-T)^{-1}. The data provide the first direct evidence for velocity dependent melting and show that the phenomenon also takes place in a system under disordered confinement. \pacs{74.25.Qt,83.50.Ha,64.70.Dv,64.60.Ht}Comment: Some small changes have been made. 4 pages, 4 figures included. Accepted for publication in Phys. Rev. Let

    Depinning and dynamics of vortices confined in mesoscopic flow channels

    Get PDF
    We study the behavior of vortex matter in artificial flow channels confined by pinned vortices in the channel edges (CE's). The critical current JsJ_s is governed by the interaction with static vortices in the CE's. We study structural changes associated with (in)commensurability between the channel width ww and the natural row spacing b0b_0, and their effect on JsJ_s. The behavior depends crucially on the presence of disorder in the CE arrays. For ordered CE's, maxima in JsJ_s occur at matching w=nb0w=nb_0 (nn integer), while for wnb0w\neq nb_0 defects along the CE's cause a vanishing JsJ_s. For weak CE disorder, the sharp peaks in JsJ_s at w=nb0w=nb_0 become smeared via nucleation and pinning of defects. The corresponding quasi-1D nn row configurations can be described by a (disordered)sine-Gordon model. For larger disorder and wnb0w\simeq nb_0, JsJ_s levels at 30\sim 30 % of the ideal lattice strength Js0J_s^0. Around 'half filling' (w/b0n±1/2w/b_0 \simeq n\pm 1/2), disorder causes new features, namely {\it misaligned} defects and coexistence of nn and n±1n \pm 1 rows in the channel. This causes a {\it maximum} in JsJ_s around mismatch, while JsJ_s smoothly decreases towards matching due to annealing of the misaligned regions. We study the evolution of static and dynamic structures on changing w/b0w/b_0, the relation between modulations of JsJ_s and transverse fluctuations and dynamic ordering of the arrays. The numerical results at strong disorder show good qualitative agreement with recent mode-locking experiments.Comment: 29 pages, 32 figure

    Vortex lattice dynamics in a-NbGe detected by mode-locking experiments

    Full text link
    We observed mode-locking (ML) of rf-dc driven vortex arrays in a superconducting weak pinning a-NbGe film. The ML voltage shows the expected scaling VfBV\propto f\sqrt{B} with ff the rf-frequency and BB the magnetic field. For large dc-velocity (corresponding to a large ML frequency), the ML current step width exhibits a squared Bessel function dependence on the rf-amplitude as predicted for ML of a lattice moving elastically through a random potential.Comment: 2 pages, 2 figures. Contribution to M2S-HTSC Ri

    Wall slip and flow of concentrated hard-sphere colloidal suspensions

    Full text link
    We present a comprehensive study of the slip and flow of concentrated colloidal suspensions using cone-plate rheometry and simultaneous confocal imaging. In the colloidal glass regime, for smooth, non-stick walls, the solid nature of the suspension causes a transition in the rheology from Herschel-Bulkley (HB) bulk flow behavior at large stress to a Bingham-like slip behavior at low stress, which is suppressed for sufficient colloid-wall attraction or colloid-scale wall roughness. Visualization shows how the slip-shear transition depends on gap size and the boundary conditions at both walls and that partial slip persist well above the yield stress. A phenomenological model, incorporating the Bingham slip law and HB bulk flow, fully accounts for the behavior. Microscopically, the Bingham law is related to a thin (sub-colloidal) lubrication layer at the wall, giving rise to a characteristic dependence of slip parameters on particle size and concentration. We relate this to the suspension's osmotic pressure and yield stress and also analyze the influence of van der Waals interaction. For the largest concentrations, we observe non-uniform flow around the yield stress, in line with recent work on bulk shear-banding of concentrated pastes. We also describe residual slip in concentrated liquid suspensions, where the vanishing yield stress causes coexistence of (weak) slip and bulk shear flow for all measured rates

    Coherent and Incoherent Vortex Flow States in Crossed Channels

    Full text link
    We examine vortex flow states in periodic square pinning arrays with one row and one column of pinning sites removed to create an easy flow crossed channel geometry. When a drive is simultaneously applied along both major symmetry axes of the pinning array such that vortices move in both channels, a series of coherent flow states develop in the channel intersection at rational ratios of the drive components in each symmetry direction when the vortices can cross the intersection without local collisions. The coherent flow states are correlated with a series of anomalies in the velocity force curves, and in some cases can produce negative differential conductivity. The same general behavior could also be realized in other systems including colloids, particle traffic in microfluidic devices, or Wigner crystals in crossed one-dimensional channels.Comment: 5 pages, 4 postscript figure

    Single File Diffusion enhancement in a fluctuating modulated 1D channel

    Full text link
    We show that the diffusion of a single file of particles moving in a fluctuating modulated 1D channel is enhanced with respect to the one in a bald pipe. This effect, induced by the fluctuations of the modulation, is favored by the incommensurability between the channel potential modulation and the moving file periodicity. This phenomenon could be of importance in order to optimize the critical current in superconductors, in particular in the case where mobile vortices move in 1D channels designed by adapted patterns of pinning sites.Comment: 4 pages, 4 figure

    Mode locking of vortex matter driven through mesoscopic channels

    Get PDF
    We investigated the driven dynamics of vortices confined to mesoscopic flow channels by means of a dc-rf interference technique. The observed mode-locking steps in the IVIV-curves provide detailed information on how the number of rows and lattice structure in the channel change with magnetic field. Minima in flow stress occur when an integer number of rows is moving coherently, while maxima appear when incoherent motion of mixed nn and n±1n\pm 1 row configurations is predominant. Simulations show that the enhanced pinning at mismatch originates from quasi-static fault zones with misoriented edge dislocations induced by disorder in the channel edges.Comment: some minor changes were made, 4 pages, 4 figures, accepted for publication in Phys. Rev. Let
    corecore