626 research outputs found

    Water-Moderated and -Reflected Slabs of Uranium Oxyfluoride

    Get PDF
    A series of ten experiments were conducted at the Oak Ridge National Laboratory Critical Experiment Facility in December 1955, and January 1956, in an attempt to determine critical conditions for a slab of aqueous uranium oxyfluoride (UO2F2). These experiments were recorded in an Oak Ridge Critical Experiments Logbook and results were published in a journal of the American Nuclear Society, Nuclear Science and Engineering, by J. K. Fox, L. W. Gilley, and J. H. Marable (Reference 1). The purpose of these experiments was to obtain the minimum critical thickness of an effectively infinite slab of UO2F2 solution by extrapolation of experimental data. To do this the slab thickness was varied and critical solution and water-reflector heights were measured using two different fuel solutions. Of the ten conducted experiments eight of the experiments reached critical conditions but the results of only six of the experiments were published in Reference 1. All ten experiments were evaluated from which five critical configurations were judged as acceptable criticality safety benchmarks. The total uncertainty in the acceptable benchmarks is between 0.25 and 0.33 % ?k/keff. UO2F2 fuel is also evaluated in HEU-SOL-THERM-043, HEU-SOL-THERM-011, and HEU-SOL-THERM-012, but these those evaluation reports are for large reflected and unreflected spheres. Aluminum cylinders of UO2F2 are evaluated in HEU-SOL-THERM-050

    CONCRETE REFLECTED ARRAYS OF U(93.2) METAL

    Get PDF
    During the period from 1963 – 1973, experiments involving highly enriched uranium units were performed at the Oak Ridge National Laboratory Critical Experiments Facility to determine various critical configurations of three-dimensional arrays. The experiments formed a four-part series, and were reported by several different experimenters; the results of interest for this evaluation are those reported for the fourth experimentation, Critical Three-Dimensional Arrays of Neutron Interacting Units: Part IV, published and performed by D.W.Magnuson (Ref 1). Information is also available in the logbook . This set of experiments utilized subcritical metal units on a split table apparatus to determine critical configurations for 2×2×2 arrangements of highly enriched uranium reflected by concrete. Magnuson manipulated the configuration of several uranium cylinders and blocks within a concrete reflector. The different permutations utilized uranium cylinders of two different heights in various positions in the three dimensional array; certain cases also placed thin uranium blocks on top of the cylinders. The thickness of the surrounding concrete, as well as the inner dimensions of the concrete reflector was also varied in certain cases. The variations resulted in fourteen different experimental permutations or configurations. All fourteen configurations were judged to be unacceptable for use as criticality safety benchmarks. All experiments were initially evaluated; however only three configurations were evaluated in detail. Configurations 2, 4, 6 and 12 were not evaluated in detail because they are subcritical and configurations 5, 7, 8, 9, and 10 were also were not evaluated in detail because they were supercritical by more than beta effective (~0.007), or prompt critical. The experiments evaluated in detail for this benchmark were configurations 1, 3, and 11. The experimental report also contains the information for HEU-MET-FAST-056. Closely related work has been recorded in HEU-MET-FAST-053, which is a benchmark evaluation of a different series of three dimensional array experiments with four different moderator materials. HEU-MET-FAST-023 and HEU-MET-FAST-026 are also related because they utilize the same metal cylinders as these experiments

    Centennial-scale variability of the Southern Hemisphere westerly wind belt in the eastern Pacific over the past two millennia

    Get PDF
    We present the first high-resolution (sub-annual) dust particle data set from West Antarctica, developed from the West Antarctic Ice Sheet (WAIS) Divide deep ice core (79.468° S, 112.086° W), and use it to reconstruct changes in atmospheric circulation over the past 2400 years. We find a background dust flux of ~4 mg m−2 year−1 and a mode particle size of 5–8 μm diameter. Through comparing the WAIS Divide record with other Antarctic ice core particle records, we observe that coastal and lower-elevation sites have higher dust fluxes and coarser particle size distributions (PSDs) than sites on the East Antarctic plateau, suggesting input from local dust sources at these lower-elevation sites. In order to explore the use of the WAIS Divide dust PSD as a proxy for past atmospheric circulation, we make quantitative comparisons between both mid-latitude zonal wind speed and West Antarctic meridional wind speed and the dust size record, finding significant positive interannual relationships. We find that the dust PSD is related to mid-latitude zonal wind speed via cyclonic activity in the Amundsen Sea region. Using our PSD record, and through comparison with spatially distributed climate reconstructions from the Southern Hemisphere (SH) middle and high latitudes, we infer that the SH westerlies occupied a more southerly position from circa 1050 to 1400 CE (Common Era), coinciding with the Medieval Climate Anomaly (MCA). Subsequently, at ca. 1430 CE, the wind belt shifted equatorward, where it remained until the mid-to-late twentieth century. We find covariability between reconstructions of El Niño–Southern Oscillation (ENSO) and the mid-latitude westerly winds in the eastern Pacific, suggesting that centennial-scale circulation changes in this region are strongly influenced by the tropical Pacific. Further, we observe increased coarse particle deposition over the past 50 years, consistent with observations that the SH westerlies have been shifting southward and intensifying in recent decades

    Semiconductor Noise

    Get PDF
    Contains reports on two research projects

    Electron Tomography of the Contact between T Cells and SIV/HIV-1: Implications for Viral Entry

    Get PDF
    The envelope glycoproteins of primate lentiviruses, including human and simian immunodeficiency viruses (HIV and SIV), are heterodimers of a transmembrane glycoprotein (usually gp41), and a surface glycoprotein (gp120), which binds CD4 on target cells to initiate viral entry. We have used electron tomography to determine the three-dimensional architectures of purified SIV virions in isolation and in contact with CD4+ target cells. The trimeric viral envelope glycoprotein surface spikes are heterogeneous in appearance and typically ∼120 Å long and ∼120 Å wide at the distal end. Docking of SIV or HIV-1 on the T cell surface occurs via a neck-shaped contact region that is ∼400 Å wide and consistently consists of a closely spaced cluster of five to seven rod-shaped features, each ∼100 Å long and ∼100 Å wide. This distinctive structure is not observed when viruses are incubated with T lymphocytes in the presence of anti-CD4 antibodies, the CCR5 antagonist TAK779, or the peptide entry inhibitor SIVmac251 C34. For virions bound to cells, few trimers were observed away from this cluster at the virion–cell interface, even in cases where virus preparations showing as many as 70 envelope glycoprotein trimers per virus particle were used. This contact zone, which we term the “entry claw”, provides a spatial context to understand the molecular mechanisms of viral entry. Determination of the molecular composition and structure of the entry claw may facilitate the identification of improved drugs for the inhibition of HIV-1 entry
    corecore