Providing Nuclear Criticality Safety Analysis Education Through Benchmark Experiment Evaluation

2009 Young Professionals Congress at the American Nuclear Society 2009 Winter Meeting

John D. Bess J. Blair Briggs David W. Nigg

November 2009

This is a preprint of a paper intended for publication in a journal or proceedings. Since changes may be made before publication, this preprint should not be cited or reproduced without permission of the author. This document was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, or any of their employees, makes any warranty, expressed or implied, or assumes any legal liability or responsibility for any third party's use, or the results of such use, of any information, apparatus, product or process disclosed in this report, or represents that its use by such third party would not infringe privately owned rights. The views expressed in this paper are not necessarily those of the United States Government or the sponsoring agency.

The INL is a U.S. Department of Energy National Laboratory operated by Battelle Energy Alliance

John D. Bess J. Blair Briggs David W. Nigg

Idaho National Laboratory, P.O. Box 1625, MS 3855, Idaho Falls, Idaho, 83415-3855 John.Bess@inl.gov, J.Briggs@inl.gov, David.Nigg@INL.gov

INTRODUCTION

One of the challenges that today's new workforce of nuclear criticality safety engineers face is the opportunity to provide assessment of nuclear systems and establish safety guidelines without having received significant experience or hands-on training prior to graduation. Participation in the International Criticality Safety Benchmark Evaluation Project (ICSBEP) and/or the International Reactor Physics Experiment Evaluation Project (IRPhEP) provides students and young professionals the opportunity to gain experience and enhance critical engineering skills.

DESCRIPTION OF THE ACTUAL WORK

Both the ICSBEP and IRPhEP publish new editions of their respective benchmark handbooks each year that contain an ever-growing collection of collaborative international evaluations. The September 2009 edition of the ICSBEP Handbook¹ contains approximately 4,295 critical or subcritical benchmark configurations, twentyfour criticality-alarm/shielding benchmark configurations, and 200 fundamental physics benchmark quantities representing efforts from 20 contributing countries. The March 2009 edition of the IRPhEP Handbook² provides benchmarks from 36 experimental series from 21 reactor facilities representing efforts from 15 contributing countries.

Benchmark procedures require the student to investigate the background, methods, and results of the experiment being evaluated. Often experiments were performed with the intention to provide data for safety assessments and may have been subsequently utilized in the development of criticality safety standards. When possible, the original experimenters are contacted to clarify published documentation.

Additional research and often engineering judgment is required when an evaluator must assess incomplete or misleading experimental information throughout the course of the benchmark evaluation. Members of the ICSBEP and IRPhEP team, as well as other laboratory or institute personnel provide their expertise in developing an in-depth evaluation. The skills, tools, and network development established during this experience is of great benefit to students returning to their universities and young professional engineers entering the workforce. The evaluator must also develop and analyze computational models of the experiment to assess uncertainty in the benchmark and provide benchmark specifications. Each evaluation report must undergo a thorough review by experienced staff with the evaluator's organization. The internal reviewer will often provide additional guidance prior to submission to an independent review from the international criticality safety, nuclear data, or reactor physics communities.

Once the independent review is completed and all concerns resolved, each evaluation report is submitted to the respective ICSBEP or IRPhEP Technical Review Group for review prior to the annual meeting. Each Technical Review Group is comprised of 30 to 40 experts from the international community. Evaluation reports that are proposed for publication in the ICSBEP or IRPhEP Handbooks are each discussed in detail at the Technical Review Meeting. Review group comments must be resolved prior to prior to publication in the respective Handbook. Evaluators are also encouraged to submit their activities for a presentation at professional conferences.

Student and young professional participation in the benchmark process is of benefit to the ICSBEP and IRPhEP, the various international user communities, the professional development of the individual, and ultimately, the company or laboratory at which the individual finds employment.

RESULTS

National laboratory, institute, university and industry participation in the ICSBEP and IRPhEP has provided benchmark research and evaluation experience to at least 30 students since 1995. Over that period students have authored or coauthored 51 ICSBEP or IRPhEP evaluations and several technical papers for various conferences and journals. A summary of student contributions to the ICSBEP and IRPhEP is given in Table 1.

ACKNOWLEDGMENTS

The ICSBEP and IRPhEP are collaborative efforts that involve numerous scientists, engineers, administrative support personnel, and program sponsors from 22 different countries. The authors would like to acknowledge the efforts of all of these dedicated individuals without whom the ICSBEP and IRPhEP would not be possible.

This paper was prepared at Idaho National Laboratory for the U.S. Department of Energy under Contract Number (DE-AC07-05ID14517).

REFERENCES

1. International Handbook of Evaluated Criticality Safety Benchmark Experiments, NEA/NSC/DOC(95)03, OECD-NEA (2009).

2. International Handbook of Evaluated Reactor Physics Benchmark Experiments, NEA/NSC/DOC(2006)1, OECD-NEA, March (2009).

EVALUATION ID & TITLE (YEAR APPROVED) AUTHOR ² (University) NATIONAL LABORATORY or COMPANY ³ IEU-MET-FAST-007 - Uranium Metal Slabs Moderated with Polyethylene, Plexiglas, and Teflon (1995) Charrine Crawford (North Western University) INL POlyethylene, Plexiglas, and Teflon (1995) (North Western University) INL 233-S0L-THERM-012 - Water-Reflected Spherical Vessels Partially Filled or Filled with ²³¹ UO ₂ (NO ₃), Solution (2002) (Brigham Young University) INL U233-S0L-THERM-012 - Unareflected Spherical Vessels Partially Filled or Filled with ²³¹ UO ₂ (NO ₃), Solution (2003) (Brigham Young University) INL MIX-MISC-THERM-010 - Unareflected Plutonium-Uranyl Nitrate Solution Containing Gadolinium (2003) (Brigham Young University) INL Solution Containing Gadolinium (2003) (Itreas A&M University) INL MIX-SOL-THERM-007 - Water-Reflected Plutonium-Uranyl Nitrate Solution Containing Gadolinium (2004) Wade Butaud (Texas A&M University) INL HEU-MET-FAST-064 - Uranium 09.14 ²⁵ U) Metal Annuli and Cylinders with Thick Polyethylene Reflectors (2007) (Georgia Institute of Technology) INL HEU-MET-FAST-064 - HEU Metal Cylinders with Magnesium, Titanium, Aluminum, Graphite, Mid Steel, Nickel, Copper-Zine Alloy, Thorium, Tungsten Alloy, or Zine Reflected (2007) INL INL HEU-MET-FAST-042 - Plutonium Heuride Uranium M	Table 1. Summary of Student Contributions to the ICSBEP and If		
Polyethylene, Plexiglas, and Teflon (1995) (North Western University) HEU-SOL-THERM-066 - Experiments with Boron-Poisoned Highly Enriched Uranyl Nitrate Solution (1997) (North Western University) INL U233-SOL-THERM-012 - Water-Reflected Spherical Vessels Partially Filled or Filled with ²³³ UO ₂ (NO ₃), Solution (2002) (Brigham Young University) INL U233-SOL-THERM-013 - Unreflected Spherical Vessels Partially Filled or Filled with ²³³ UO ₂ (NO ₃), Solution (2003) Rul Foster INL MIX-MISC-THERM-004 - Water-Reflected Triangular-Pitched Lattice of Mixed Oxide Fuel Rods Immersed in Plutonium-Uranyl Nitrate Solution Containing Gadolinium (2003) Paul Foster (Brigham Young University) INL MIX-SOL-THERM-007 - Water-Reflected Plutonium-Uranyl Nitrate Solution Containing Gadolinium (2004) Wade Butaud (Creas A&M University) INL HEU-MET-FAST-076 - Uranium (93,14 ²³⁵ U) Metal Annuli and Cylinders with Thick Polyethylene Reflectors and/or Internal Polyethylene Moderator (2006) Tyler Summer (Georgia Institute of Technology) INL HEU-MET-FAST-076 - HEU Metal Cylinders with Magnesium, Titanium, Aluminum, Graphite, Mild Steel, Nickel, Copper, Cobalt, Molybdenum, Natural Uranium, Tungsten, Beryllium, Aluminum Oxide, Molybdenum, Natural Uranium, Tungsten, Beryllium, Aluminum Oxide, Molybdenum, Natural Uranium, Tungsten Alloy, or Zinc Reflectors (2007) INL HEU-MET-FAST-082 - Highly Enriched Uranium Metal Spheres Surrounded by Copper, Casthron, Nickel, Nickel-Copper-Zinc Alloy, Thorium, Tungs			LABORATORY or
HEU-SOL-THERM-006 - Experiments with Boron-Poisoned Highly Enriched Uranyl Nitrate Solution (1997) INL U233-SOL-THERM-012 - Water-Reflected Spherical Vessels Partially Filled or Filled with ²³³ UO ₂ (NO ₃) ₂ Solution (2002) Paul Foster (Brigham Young University) INL U233-SOL-THERM-013 - Unreflected Spherical Vessels Partially Filled or Filled with ²³³ UO ₂ (NO ₃) ₂ Solution (2003) Paul Foster (Brigham Young University) INL MIX-MISC-THERM-004 - Water-Reflected Triangular-Pitched Lattice of Mixed Oxide Fuel Rods Immersed in Plutonium / Uranyl Nitrate Solution Containing Gadolinium (2003) Nut Paul Foster (Brigham Young University) INL MIX-SOL-THERM-007 - Water-Reflected Plutonium-Uranyl Nitrate Solution Containing Gadolinium (2004) Wade Butaud (Texas A&M University) INL HEU-SOL-THERM-007 - Uranium (31.4 ²³⁵ U) Metal Annuli and Cylinders with Thick Polyethylene Reflectors and/or Internal Polyethylene Moderator (2006) Tyler Sumner (Georgia Institute of Technology) INL HEU-MET-FAST-084 - HEU Metal Cylinders with Magnesium, Titanium, Aluminum, Graphite, Mild Steel, Nickel, Copper, Cobalt, Molybdenum, Natural Uranium, Tungsten, Beryllium, Aluminum Oxide, Molybdenum, Natural Uranium, Tungsten, Beryllium, Aluminum Oxide, Molybdenum, Satural Uranium, Tungsten, Bergluitum, Aluminum Oxide, Molybdenum, Satural Uranium, Tungsten Alloy, or Zine Reflectors (2007) Jose Ignacio Marquez Damian (Georgia Institute of Technology) INL Leu-MET-FAST-042 - Plutonium Hemispheres Reflected by Steel and Oil (2008) <td< td=""><td>HEU-MET-FAST-007 – Uranium Metal Slabs Moderated with</td><td>Catherine Crawford</td><td>INL</td></td<>	HEU-MET-FAST-007 – Uranium Metal Slabs Moderated with	Catherine Crawford	INL
Enriched Uranyl Nitrate Solution (1997) (North Western University) INL U233-SOL-THERM-012 – Water-Reflected Spherical Vessels Partially Paul Foster INL Filled or Filled with ¹²³ UO ₂ (NO ₃), Solution (2002) (Brigham Young University) INL WIX-MISC-THERM-004 – Water-Reflected Triangular-Pitched Lattice Paul Foster INL of Mixed Oxide Fuel Rods Immersed in Plutonium / Uranyl Nitrate Brigham Young University) INL Solution Containing Gadolinium (2003) INL (Brigham Young University) INL MIX-SOL-THERM-007 – Water-Reflected Plutonium-Uranyl Nitrate Wade Butaud INL Solution Containing Gadolinium (2004) (Texas A&M University) INL HEU-SOL-THERM-050 – Unreflected Aluminum Cylinders Wade Butaud INL Containing Uranyl Fluoride Solutions (2005) (Texas A&M University) INL HEU-MET-FAST-076 – Uranium (93.14 ²³⁵ U) Metal Annuli and Tyler Summer (Georgia Institute of Technology) Polyethylene Moderator (2006) INL Bernard Jones INL Molybdenum, Natural Uranium, Tungsten, Beryllium, Aluminum Oxide, Georgia Institute of Technology) INL Molybdenum, Natural Uranium, Tungsten, Beryllium, A		(North Western University)	
Enriched Uranyl Nitrate Solution (1997) (North Western University) U233-SOL-THERM-012 – Water-Reflected Spherical Vessels Partially Paul Foster Filled or Filled with ²³³ UO ₂ (NO ₃) ₂ Solution (2002) (Brigham Young University) INL Witz-MISC-THERM-013 – Unreflected Spherical Vessels Partially Paul Foster INL Filled or Filled with ²³³ UO ₂ (NO ₃) ₂ Solution (2003) (Brigham Young University) INL MIX-MISC-THERM-004 – Water-Reflected Triangular-Pitched Lattice Paul Foster INL Solution Containing Gadolinium (2003) (Brigham Young University) INL MIX-MISC-THERM-007 – Water-Reflected Plutonium-Uranyl Nitrate Wade Butaud INL Solution Containing Gadolinium (2004) (Texas A&M University) INL HEU-SOL-THERM-007 – Water-Reflected Plutonium-Uranyl Nitrate Wade Butaud INL Solution Containing Gadolinium (93.14 ²³⁵ U) Metal Annuli and Tyler Summer INL Cylinders with Thick Polyethylene Reflectors and/or Internal Polyethylene Moderator (2006) INL HEU-MET-FAST-076 – Highly Enriched Uranium Metal Spheres Jessica Feener INL Molybdenum, Natural Uranium, Tungsten, Beryllium, Aluminum Oxide, Molybdenum, Natural Uranium, Tungsten, Beryllium, Aluminum Oxide, Molybdenum, Natural Uranium, Tungsten, Beryllium, A		Catherine Crawford	INI
Filled or Filled with ²³³ UO ₂ (NO ₃) ₂ Solution (2002) (Brigham Young University) INL U233-SOL-THERM-013 - Unreflected Spherical Vessels Partially Paul Foster INL Filled or Filled with ²³³ UO ₂ (NO ₃) ₂ Solution (2003) (Brigham Young University) INL MIX-MISC-THERM-004 - Water-Reflected Triangular-Pitched Lattice of Mixed Oxide Fuel Rods Immersed in Plutonium / Uranyl Nitrate Solution Containing Gadolinium (2003) Paul Foster (Brigham Young University) INL MIX-SOL-THERM-007 - Water-Reflected Plutonium-Uranyl Nitrate Solution Containing Gadolinium (2004) Wade Butaud (Texas A&M University) INL HEU-SOL-THERM-007 - Water-Reflected Plutonium-Uranyl Nitrate Solution Containing Gadolinium (9204) Wade Butaud (Texas A&M University) INL HEU-SOL-THERM-050 - Unreflected Aluminum Cylinders Wade Butaud (Georgia Institute of Technology) INL Polyethylene Moderator (2006) Tyler Sumner (Georgia Institute of Technology) INL HEU-MET-FAST-084 - HEU Metal Cylinders with Magnesium, Titanium, Aluminum, Tungsten, Beryllium, Aluminum Oxide, Molybdenum, Natural Uranium, Tungsten, Beryllium, Aluminum Oxide, Molybdenum, Natural Uranium, Tungsten, Beryllium, Aluminum Oxide, Molybdenum, Natural Uranium, Henispheres (2007) INL PU-MET-FAST-084 - HEU Metal Cylinders (2007) INL INL PU-MET-FAST-084 - Highly Enriched Uranium Metal Spheres Surrounded by Copper, Cast Iron, Nickel, Nickel-Copper-Zinc A	Enriched Uranyl Nitrate Solution (1997)		INL
Filled or Filled with "2005(NO3)2 Solution (2002) (Brigham Young University) U233-SOL-THERM-013 - Unreflected Spherical Vessels Partially Paul Foster INL Filled or Filled with "23U02(NO3)2 Solution (2003) (Brigham Young University) INL MIX-MISC-THERM-004 - Water-Reflected Triangular-Pitched Lattice of Mixed Oxide Fuel Rods Immersed in Plutonium / Uranyl Nitrate Solution Containing Gadolinium (2003) Wade Butaud (Texas A&M University) INL MIX-SOL-THERM-007 - Water-Reflected Plutonium-Uranyl Nitrate Solution Containing Gadolinium (2004) Wade Butaud (Texas A&M University) INL HEU-SOL-THERM-050 - Unreflected Aluminum Cylinders Containing Uranyl Fluoride Solutions (2005) (Texas A&M University) INL HEU-MET-FAST-076 - Uranium (93.14 ²³⁵ U) Metal Annuli and Cylinders with Thick Polyethylene Reflectors and/or Internal Polyethylene Moderator (2006) Tyler Sumner (Georgia Institute of Technology) INL MetU-MET-FAST-084 - HEU Metal Cylinders with Magnesium, Titanium, Aluminum, Graphite, Mild Steel, Nickel, Copper, Cobalt, Molybdenum, Carbide, and Polyethylene Reflectors (2007) Bernard Jones (Georgia Institute of Technology) INL PU-MET-FAST-085 - Highly Enriched Uranium Metal Spheres Surrounded by Copper, Cast Iron, Nickel, Nickel-Copper-Zinc Alloy, Thorium, Tungsten Alloy, or Zinc Reflectors (2007) Jose Ignacio Marquez Damian (Georgia Institute of Technology) INL Ui (2008) ULU-MET-FAST-042 - Plutonium Hemispheres Reflected by Ste	U233-SOL-THERM-012 – Water-Reflected Spherical Vessels Partially		INI
U233-SOL-THERM-013 - Unreflected Spherical Vessels Partially Paul Foster INL Filled or Filled with ²³³ UO ₂ (NO ₃) ₂ Solution (2003) (Brigham Young University) INL MIX-MISC-THERM-004 - Water-Reflected Triangular-Pitched Lattice of Mixed Oxide Fuel Rods Immersed in Plutonium / Uranyl Nitrate Solution Containing Gadolinium (2003) Paul Foster INL MIX-SOL-THERM-007 - Water-Reflected Plutonium-Uranyl Nitrate Solution Containing Gadolinium (2004) Wade Butaud INL HEU-SOL-THERM-050 - Unreflected Aluminum Cylinders Wade Butaud INL Containing Uranyl Fluoride Solutions (2005) (Texas A&M University) INL HEU-MET-FAST-076 - Uranium (93.14 ²³⁵ U) Metal Annuli and Cylinders with Thick Polyethylene Reflectors and/or Internal Polyethylene Moderator (2006) Tyler Summer (Georgia Institute of Technology) INL HEU-MET-FAST-084 - HEU Metal Cylinders with Magnesium, Titanium, Aluminum, Graphite, Mild Steel, Nickel, Copper, Cobalt, Molybdenum, Natural Uranium, Tungsten, Beryllium, Aluminum Oxide, Molybdenum Carbide, and Polyethylene Reflectors (2007) Bernard Jones (Georgia Institute of Technology) INL PU-MET-FAST-085 - Highly Enriched Uranium Metal Spheres Surrounded by Copper, Cast Iron, Nickel, Nickel, Copper-Zinc Alloy, Thorium, Tungsten Alloy, or Zinc Reflectors (2007) Jose Ignacio Marquez Damian (Georgia Institute of Technology) INL LEU-COMP-THERM-028 - Water-Moderated U(4.31)O ₂ Fuel Rods In Triangular Lattices with Boron, Cadmium and Gadolinium as Soluble Poisons (2008) Jose Ignacio Marquez Damian (Georgia Institute of	Filled or Filled with ²³³ UO ₂ (NO ₃) ₂ Solution (2002)		INL
Filled or Filled with ""UO ₂ (NO ₃); Solution (2003) (Brigham Young University) MIX-MISC-THERM-004 – Water-Reflected Triangular-Pitched Lattice of Mixed Oxide Fuel Rods Immersed in Plutonium / Uranyl Nitrate Solution Containing Gadolinium (2003) Paul Foster (Brigham Young University) INL MIX-SOL-THERM-007 – Water-Reflected Plutonium-Uranyl Nitrate Solution Containing Gadolinium (2004) Wade Butaud (Texas A&M University) INL HEU-SOL-THERM-050 – Unreflected Aluminum Cylinders Containing Uranyl Fluoride Solutions (2005) Wade Butaud (Texas A&M University) INL HEU-MET-FAST-076 – Uranium (93.14 ²³⁵ U) Metal Annuli and Cylinders with Thick Polyethylene Reflectors and/or Internal Polyethylene Moderator (2006) Tyler Sumner (Georgia Institute of Technology) INL HEU-MET-FAST-084 – HEU Metal Cylinders with Magnesium, Titanium, Aluminum, Graphite, Mild Steel, Nickel, Copper, Cobalt, Molybdenum Carbide, and Polyethylene Reflectors (2007) Bernard Jones (Georgia Institute of Technology) INL HEU-MET-FAST-042 – Plutonium Hemispheres Reflected by Steel and Oil (2008) John D. Bess (University of Utah) INL Uil (2008) UL-COMP-THERM-028 – Water-Moderated U(4.31)O ₂ Fuel Rods In Triangular Lattices with Boron, Cadmium and Gadolinium as Soluble Poisons (2008) Jose Ignacio Marquez Damian (Georgia Institute of Technology) INL LEU-OMISC-THERM-012 – RA-0 Reactor: Graphite Reflected Poisons (2008) INL Jose Ignacio Marquez Damian (Georgia Institute of Technology) <td< td=""><td>U233-SOL-THERM-013 – Unreflected Spherical Vessels Partially</td><td></td><td>INI</td></td<>	U233-SOL-THERM-013 – Unreflected Spherical Vessels Partially		INI
of Mixed Oxide Fuel Rods Immersed in Plutonium / Uranyl Nitrate Solution Containing Gadolinium (2003) Paul Poster (Brigham Young University) INL MIX-SOL-THERM-007 - Water-Reflected Plutonium-Uranyl Nitrate Solution Containing Gadolinium (2004) Wade Butaud (Texas A&M University) INL HEU-SOL-THERM-050 - Unreflected Aluminum Cylinders Cylinders with Thick Polyethylene Reflectors and/or Internal Polyethylene Moderator (2006) Wade Butaud (Texas A&M University) INL HEU-MET-FAST-076 - Uranium (93.14 ²³⁵ U) Metal Annuli and Cylinders with Thick Polyethylene Reflectors and/or Internal Polyethylene Moderator (2006) Tyler Sumner (Georgia Institute of Technology) INL HEU-MET-FAST-084 - HEU Metal Cylinders with Magnesium, Titanium, Aluminum, Graphite, Mild Steel, Nickel, Copper, Cobalt, Molybdenum, Natural Uranium, Tungsten, Beryllium, Aluminum Oxide, Molybdenum Carbide, and Polyethylene Reflectors (2007) Bernard Jones (Georgia Institute of Technology) INL PU-MET-FAST-085 - Highly Enriched Uranium Metal Spheres Surrounded by Copper, Cast Iron, Nickel, Nickel-Copper-Zine Alloy, Thorium, Tungsten Alloy, or Zinc Reflectors (2007) Jose Ignacio Marquez Damian (Georgia Institute of Technology) INL U2008) INL Jose Ignacio Marquez Damian (Georgia Institute of Technology) INL LEU-COMP-THERM-028 - Water-Moderated U(4.31)O ₂ Fuel Rods In Triangular Lattices with Boron, Cadmium and Gadolinium as Soluble Poisons (2008) Jose Ignacio Marquez Damian (Georgia Institute of Technology) INL LEU-MISC-THERM-012 - RA-0 Reactor: Graphite Reflected Jose Ignacio Marquez Damian (Instituto Balsei		(Brigham Young University)	INL
of Mixed Oxide Fuel Rods Immersed in Plutonium / Uranyl Nitrate (Brigham Young University) INL Solution Containing Gadolinium (2003) (Brigham Young University) INL MIX-SOL-THERM-007 – Water-Reflected Plutonium-Uranyl Nitrate Wade Butaud (Texas A&M University) INL HEU-SOL-THERM-050 – Unreflected Aluminum Cylinders Wade Butaud (Texas A&M University) INL HEU-MET-FAST-076 – Uranium (93.14 ²³⁵ U) Metal Annuli and Cylinders with Thick Polyethylene Reflectors and/or Internal Tyler Sumner (Georgia Institute of Technology) Polyethylene Moderator (2006) INL Bernard Jones INL Molybdenum, Natural Uranium, Tungsten, Beryllium, Aluminum Oxide, Georgia Institute of Technology) INL Molybdenum, Carbide, and Polyethylene Reflectors (2007) INL INL HEU-MET-FAST-045 – Highly Enriched Uranium Metal Spheres Jessica Feener INL Surrounded by Copper, Cast Iron, Nickel, Nickel-Copper-Zinc Alloy, John D. Bess INL Vilc 2008) INL Jose Ignacio Marquez Damian INL Vilc 2008) Georgia Institute of Technology) INL EU-MET-FAST-042 – Plutonium Hemispheres Reflected by Steel and John D. Bess INL Vilc 2008) INL <td></td> <td>Paul Foster</td> <td></td>		Paul Foster	
Solution Containing Gadolinium (2003) INL MIX-SOL-THERM-007 – Water-Reflected Plutonium-Uranyl Nitrate Wade Butaud Solution Containing Gadolinium (2004) (Texas A&M University) HEU-SOL-THERM-050 – Unreflected Aluminum Cylinders Wade Butaud Containing Uranyl Fluoride Solutions (2005) (Texas A&M University) HEU-MET-FAST-076 – Uranium (93.14 ²³⁵ U) Metal Annuli and Tyler Sumner Cylinders with Thick Polyethylene Reflectors and/or Internal Tyler Sumner Polyethylene Moderator (2006) (Georgia Institute of Technology) HEU-MET-FAST-084 – HEU Metal Cylinders with Magnesium, Bernard Jones Titanium, Aluminum, Graphite, Mild Steel, Nickel, Copper, Cobalt, Bernard Jones Molybdenum Carbide, and Polyethylene Reflectors (2007) INL HEU-MET-FAST-085 – Highly Enriched Uranium Metal Spheres Jessica Feener Surrounded by Copper, Cast Iron, Nickel, Nickel-Copper-Zinc Alloy, (Georgia Institute of Technology) PU-MET-FAST-042 – Plutonium Hemispheres Reflected by Steel and John D. Bess INL Oil (2008) University of Utah) INL LEU-COMP-THERM-004 – U(4.31)O ₂ Fuel Rods In Uranyl Nitrate Jose Ignacio Marquez Damian INL Poisons (2008) ID-MEIC-MERGE Conser Graphite Reflected			INL
Solution Containing Gadolinium (2004)(Texas A&M University)INLHEU-SOL-THERM-050 - Unreflected Aluminum CylindersWade Butaud (Texas A&M University)INLContaining Uranyl Fluoride Solutions (2005)(Texas A&M University)INLHEU-MET-FAST-076 - Uranium (93.14 ²³⁵ U) Metal Annuli and Cylinders with Thick Polyethylene Reflectors and/or Internal Polyethylene Moderator (2006)Tyler Sumner (Georgia Institute of Technology)INLHEU-MET-FAST-084 - HEU Metal Cylinders with Magnesium, Titanium, Aluminum, Graphite, Mild Steel, Nickel, Copper, Cobalt, Molybdenum, Natural Uranium, Tungsten, Beryllium, Aluminum Oxide, Molybdenum Carbide, and Polyethylene Reflectors (2007)Bernard Jones (Georgia Institute of Technology)INLHEU-MET-FAST-085 - Highly Enriched Uranium Metal Spheres Surrounded by Copper, Cast Iron, Nickel, Nickel-Copper-Zinc Alloy, Thorium, Tungsten Alloy, or Zinc Reflectors (2007)John D. Bess (University of Utah)INLLEU-COMP-THERM-028 - Water-Moderated U(4.31)O2 Fuel Rods In Triangular Lattices with Boron, Cadmium and Gadolinium as Soluble Poisons (2008)Jose Ignacio Marquez Damian (Georgia Institute of Technology)INLLEU-COMP-THERM-012 - RA-0 Reactor: Graphite Reflected Aurangement of IUO-Graphite Euel Rods in Water (2008)Jose Ignacio Marquez Damian (Institute Balseiro - UniversidadINLEU-COMP-THERM-012 - RA-0 Reactor: Graphite Reflected Aurangement of LIO-Graphite Euel Rods in Water (2008)Jose Ignacio Marquez Damian (Institute Balseiro - UniversidadINL			
Solution Containing Gadolinium (2004) (Texas A&M University) HEU-SOL-THERM-050 – Unreflected Aluminum Cylinders Wade Butaud Containing Uranyl Fluoride Solutions (2005) (Texas A&M University) HEU-MET-FAST-076 – Uranium (93.14 ²³⁵ U) Metal Annuli and Tyler Sumner Cylinders with Thick Polyethylene Reflectors and/or Internal Tyler Sumner Polyethylene Moderator (2006) (Georgia Institute of Technology) HEU-MET-FAST-084 – HEU Metal Cylinders with Magnesium, Bernard Jones Molybdenum, Natural Uranium, Tungsten, Beryllium, Aluminum Oxide, (Georgia Institute of Technology) Molybdenum, Carbide, and Polyethylene Reflectors (2007) INL HEU-MET-FAST-085 – Highly Enriched Uranium Metal Spheres Jessica Feener Surrounded by Copper, Cast Iron, Nickel, Nickel-Copper-Zinc Alloy, (Georgia Institute of Technology) PU-MET-FAST-042 – Plutonium Hemispheres Reflected by Steel and John D. Bess Oil (2008) INL LEU-COMP-THERM-028 – Water-Moderated U(4.31)O ₂ Fuel Rods In Jose Ignacio Marquez Damian Georgia Institute of Technology) INL LEU-MISC-THERM-004 – U(4.31)O ₂ Fuel Rods In Uranyl Nitrate Jose Ignacio Marquez Damian Solution Containing Gadolinium (2008) INL INL Jose Ignaci			INL
Containing Uranyl Fluoride Solutions (2005)(Texas A&M University)INLHEU-MET-FAST-076 – Uranium (93.14235U) Metal Annuli and Cylinders with Thick Polyethylene Reflectors and/or Internal Polyethylene Moderator (2006)Tyler Summer (Georgia Institute of Technology)INLHEU-MET-FAST-084 – HEU Metal Cylinders with Magnesium, Titanium, Aluminum, Graphite, Mild Steel, Nickel, Copper, Cobalt, Molybdenum, Natural Uranium, Tungsten, Beryllium, Aluminum Oxide, Molybdenum Carbide, and Polyethylene Reflectors (2007)Bernard Jones (Georgia Institute of Technology)INLHEU-MET-FAST-085 – Highly Enriched Uranium Metal Spheres Surrounded by Copper, Cast Iron, Nickel, Nickel-Copper-Zinc Alloy, Thorium, Tungsten Alloy, or Zinc Reflectors (2007)Jessica Feener (Georgia Institute of Technology)INLPU-MET-FAST-042 – Plutonium Hemispheres Reflected by Steel and Oil (2008)John D. Bess (University of Utah)INLLEU-COMP-THERM-028 – Water-Moderated U(4.31)O2 Fuel Rods In Triangular Lattices with Boron, Cadmium and Gadolinium as Soluble Poisons (2008)Jose Ignacio Marquez Damian (Georgia Institute of Technology)INLLEU-COMP-THERM-012 – RA-0 Reactor: Graphite Reflected Arrangement of U/O-Graphite Fuel Rods in Water (2008)Jose Ignacio Marquez Damian (Institute of Technology)INL			IIIL
Contaming Uranyl Fluoride Solutions (2005) (Texas A&M University) HEU-MET-FAST-076 – Uranium (93.14 ²³⁵ U) Metal Annuli and Cylinders with Thick Polyethylene Reflectors and/or Internal Polyethylene Moderator (2006) Tyler Sumner (Georgia Institute of Technology) INL HEU-MET-FAST-084 – HEU Metal Cylinders with Magnesium, Titanium, Aluminum, Graphite, Mild Steel, Nickel, Copper, Cobalt, Molybdenum, Natural Uranium, Tungsten, Beryllium, Aluminum Oxide, Molybdenum Carbide, and Polyethylene Reflectors (2007) Bernard Jones (Georgia Institute of Technology) INL HEU-MET-FAST-085 – Highly Enriched Uranium Metal Spheres Surrounded by Copper, Cast Iron, Nickel, Nickel-Copper-Zinc Alloy, Thorium, Tungsten Alloy, or Zinc Reflectors (2007) Jessica Feener (Georgia Institute of Technology) INL PU-MET-FAST-042 – Plutonium Hemispheres Reflected by Steel and Oil (2008) John D. Bess (University of Utah) INL LEU-COMP-THERM-028 – Water-Moderated U(4.31)O ₂ Fuel Rods In Triangular Lattices with Boron, Cadmium and Gadolinium as Soluble Poisons (2008) Jose Ignacio Marquez Damian (Georgia Institute of Technology) INL LEU-MISC-THERM-004 – U(4.31)O ₂ Fuel Rods In Uranyl Nitrate Solution Containing Gadolinium (2008) Jose Ignacio Marquez Damian (Instituto Balseiro - Universidad INL IEU-COMP-THERM-012 – RA-0 Reactor: Graphite Reflected Arrangement of Up-Graphite Euel Rode in Water (2008) Jose Ignacio Marquez Damian (Instituto Balseiro - Universidad INL			INL
Cylinders with Thick Polyethylene Reflectors and/or Internal Polyethylene Moderator (2006) INL HEU-MET-FAST-084 – HEU Metal Cylinders with Magnesium, Titanium, Aluminum, Graphite, Mild Steel, Nickel, Copper, Cobalt, Molybdenum, Natural Uranium, Tungsten, Beryllium, Aluminum Oxide, Molybdenum Carbide, and Polyethylene Reflectors (2007) Bernard Jones (Georgia Institute of Technology) INL HEU-MET-FAST-085 – Highly Enriched Uranium Metal Spheres Surrounded by Copper, Cast Iron, Nickel, Nickel-Copper-Zinc Alloy, Thorium, Tungsten Alloy, or Zinc Reflectors (2007) Jessica Feener (Georgia Institute of Technology) INL PU-MET-FAST-042 – Plutonium Hemispheres Reflected by Steel and Oil (2008) John D. Bess (University of Utah) INL LEU-COMP-THERM-028 – Water-Moderated U(4.31)O ₂ Fuel Rods In Triangular Lattices with Boron, Cadmium and Gadolinium as Soluble Poisons (2008) Jose Ignacio Marquez Damian (Georgia Institute of Technology) INL LEU-MISC-THERM-004 – U(4.31)O ₂ Fuel Rods In Uranyl Nitrate Solution Containing Gadolinium (2008) Jose Ignacio Marquez Damian (Instituto Balseiro - Universidad INL IEU-COMP-THERM-012 – RA-0 Reactor: Graphite Reflected Arrangement of UO-Graphite Fuel Rods in Water (2008) Jose Ignacio Marquez Damian (Instituto Balseiro - Universidad INL	Containing Uranyl Fluoride Solutions (2005)	(Texas A&M University)	II (L
Cynnders with Tinck Polyethylene Reflectors and/or Internal Polyethylene Moderator (2006) INL HEU-MET-FAST-084 – HEU Metal Cylinders with Magnesium, Titanium, Aluminum, Graphite, Mild Steel, Nickel, Copper, Cobalt, Molybdenum, Natural Uranium, Tungsten, Beryllium, Aluminum Oxide, Molybdenum Carbide, and Polyethylene Reflectors (2007) Bernard Jones (Georgia Institute of Technology) INL HEU-MET-FAST-085 – Highly Enriched Uranium Metal Spheres Surrounded by Copper, Cast Iron, Nickel, Nickel-Copper-Zinc Alloy, Thorium, Tungsten Alloy, or Zinc Reflectors (2007) Jessica Feener (Georgia Institute of Technology) INL PU-MET-FAST-042 – Plutonium Hemispheres Reflected by Steel and Oil (2008) John D. Bess (University of Utah) INL LEU-COMP-THERM-028 – Water-Moderated U(4.31)O ₂ Fuel Rods In Triangular Lattices with Boron, Cadmium and Gadolinium as Soluble Poisons (2008) Jose Ignacio Marquez Damian (Georgia Institute of Technology) INL LEU-MISC-THERM-004 – U(4.31)O ₂ Fuel Rods In Uranyl Nitrate Solution Containing Gadolinium (2008) Jose Ignacio Marquez Damian (Georgia Institute of Technology) INL IEU-COMP-THERM-012 – RA-0 Reactor: Graphite Reflected Arrangement of IUO-Graphite Fuel Rods in Water (2008) Jose Ignacio Marquez Damian (Instituto Balseiro - Universidad INL		Tyler Sumner	
Polyetnylene Moderator (2006) HEU-MET-FAST-084 – HEU Metal Cylinders with Magnesium, Titanium, Aluminum, Graphite, Mild Steel, Nickel, Copper, Cobalt, Molybdenum, Natural Uranium, Tungsten, Beryllium, Aluminum Oxide, Molybdenum Carbide, and Polyethylene Reflectors (2007) Bernard Jones (Georgia Institute of Technology) INL HEU-MET-FAST-085 – Highly Enriched Uranium Metal Spheres Surrounded by Copper, Cast Iron, Nickel, Nickel-Copper-Zinc Alloy, Thorium, Tungsten Alloy, or Zinc Reflectors (2007) Jessica Feener (Georgia Institute of Technology) INL PU-MET-FAST-042 – Plutonium Hemispheres Reflected by Steel and Oil (2008) John D. Bess (University of Utah) INL LEU-COMP-THERM-028 – Water-Moderated U(4.31)O ₂ Fuel Rods In Triangular Lattices with Boron, Cadmium and Gadolinium as Soluble Poisons (2008) Jose Ignacio Marquez Damian (Georgia Institute of Technology) INL LEU-COMP-THERM-004 – U(4.31)O ₂ Fuel Rods In Uranyl Nitrate Solution Containing Gadolinium (2008) Jose Ignacio Marquez Damian (Georgia Institute of Technology) INL IEU-COMP-THERM-012 – RA-0 Reactor: Graphite Reflected Arrangement of UO ₂ -Graphite Fuel Rods in Water (2008) Jose Ignacio Marquez Damian (Instituto Balseiro - Universidad INL			INL
Titanium, Aluminum, Graphite, Mild Steel, Nickel, Copper, Cobalt, Molybdenum, Natural Uranium, Tungsten, Beryllium, Aluminum Oxide, Molybdenum Carbide, and Polyethylene Reflectors (2007)Bernard Jones (Georgia Institute of Technology)INLHEU-MET-FAST-085 – Highly Enriched Uranium Metal Spheres Surrounded by Copper, Cast Iron, Nickel, Nickel-Copper-Zinc Alloy, Thorium, Tungsten Alloy, or Zinc Reflectors (2007)Jessica Feener (Georgia Institute of Technology)INLPU-MET-FAST-042 – Plutonium Hemispheres Reflected by Steel and Oil (2008)John D. Bess (University of Utah)INLLEU-COMP-THERM-028 – Water-Moderated U(4.31)O2 Fuel Rods In Triangular Lattices with Boron, Cadmium and Gadolinium as Soluble Poisons (2008)Jose Ignacio Marquez Damian (Georgia Institute of Technology)INLLEU-MISC-THERM-004 – U(4.31)O2 Fuel Rods In Uranyl Nitrate Solution Containing Gadolinium (2008)Jose Ignacio Marquez Damian (Georgia Institute of Technology)INLIEU-COMP-THERM-012 – RA-0 Reactor: Graphite Reflected Arrangement of UO-Graphite Fuel Rods in Water (2008)Jose Ignacio Marquez Damian (Instituto Balseiro - UniversidadINL		(Georgia institute of Feenhology)	
Molybdenum, Natural Uranium, Tungsten, Beryllium, Aluminum Oxide, Molybdenum Carbide, and Polyethylene Reflectors (2007)(Georgia Institute of Technology)INLHEU-MET-FAST-085 – Highly Enriched Uranium Metal Spheres Surrounded by Copper, Cast Iron, Nickel, Nickel-Copper-Zinc Alloy, Thorium, Tungsten Alloy, or Zinc Reflectors (2007)Jessica Feener (Georgia Institute of Technology)INLPU-MET-FAST-042 – Plutonium Hemispheres Reflected by Steel and Oil (2008)John D. Bess (University of Utah)INLLEU-COMP-THERM-028 – Water-Moderated U(4.31)O2 Fuel Rods In Triangular Lattices with Boron, Cadmium and Gadolinium as Soluble Poisons (2008)Jose Ignacio Marquez Damian (Georgia Institute of Technology)INLLEU-MISC-THERM-004 – U(4.31)O2 Fuel Rods In Uranyl Nitrate Solution Containing Gadolinium (2008)Jose Ignacio Marquez Damian (Georgia Institute of Technology)INLIEU-COMP-THERM-012 – RA-0 Reactor: Graphite Reflected Arrangement of LIO2-Graphite Euel Rods in Water (2008)Jose Ignacio Marquez Damian (Instituto Balseiro - UniversidadINL			
Molybdenum, Natural Uranium, Tungsten, Beryllium, Aluminum Oxide, Molybdenum Carbide, and Polyethylene Reflectors (2007) (Georgia Institute of Technology) HEU-MET-FAST-085 – Highly Enriched Uranium Metal Spheres Surrounded by Copper, Cast Iron, Nickel, Nickel-Copper-Zinc Alloy, Thorium, Tungsten Alloy, or Zinc Reflectors (2007) Jessica Feener (Georgia Institute of Technology) INL PU-MET-FAST-042 – Plutonium Hemispheres Reflected by Steel and Oil (2008) John D. Bess (University of Utah) INL LEU-COMP-THERM-028 – Water-Moderated U(4.31)O2 Fuel Rods In Triangular Lattices with Boron, Cadmium and Gadolinium as Soluble Poisons (2008) Jose Ignacio Marquez Damian (Georgia Institute of Technology) INL LEU-MISC-THERM-004 – U(4.31)O2 Fuel Rods In Uranyl Nitrate Solution Containing Gadolinium (2008) Jose Ignacio Marquez Damian (Georgia Institute of Technology) INL IEU-COMP-THERM-012 – RA-0 Reactor: Graphite Reflected Arrangement of LIO2-Graphite Fuel Rods in Water (2008) Jose Ignacio Marquez Damian (Instituto Balseiro - Universidad INL			INL
HEU-MET-FAST-085 – Highly Enriched Uranium Metal Spheres Surrounded by Copper, Cast Iron, Nickel, Nickel-Copper-Zinc Alloy, Thorium, Tungsten Alloy, or Zinc Reflectors (2007)Jessica Feener (Georgia Institute of Technology)INLPU-MET-FAST-042 – Plutonium Hemispheres Reflected by Steel and Oil (2008)John D. Bess (University of Utah)INLLEU-COMP-THERM-028 – Water-Moderated U(4.31)O2 Fuel Rods In Triangular Lattices with Boron, Cadmium and Gadolinium as Soluble Poisons (2008)Jose Ignacio Marquez Damian (Georgia Institute of Technology)INLLEU-MISC-THERM-004 – U(4.31)O2 Fuel Rods In Uranyl Nitrate Solution Containing Gadolinium (2008)Jose Ignacio Marquez Damian (Georgia Institute of Technology)INLIEU-COMP-THERM-012 – RA-0 Reactor: Graphite Reflected Arrangement of LIO2-Graphite Fuel Rods in Water (2008)Jose Ignacio Marquez Damian (Instituto Balseiro - UniversidadINL		(Georgia Institute of Technology)	
Surrounded by Copper, Cast Iron, Nickel, Nickel-Copper-Zinc Alloy, Thorium, Tungsten Alloy, or Zinc Reflectors (2007)Jessica Feener (Georgia Institute of Technology)INLPU-MET-FAST-042 – Plutonium Hemispheres Reflected by Steel and Oil (2008)John D. Bess (University of Utah)INLLEU-COMP-THERM-028 – Water-Moderated U(4.31)O2 Fuel Rods In Triangular Lattices with Boron, Cadmium and Gadolinium as Soluble Poisons (2008)Jose Ignacio Marquez Damian (Georgia Institute of Technology)INLLEU-MISC-THERM-004 – U(4.31)O2 Fuel Rods In Uranyl Nitrate Solution Containing Gadolinium (2008)Jose Ignacio Marquez Damian (Georgia Institute of Technology)INLIEU-COMP-THERM-012 – RA-0 Reactor: Graphite Reflected Arrangement of LO2-Graphite Fuel Rods in Water (2008)Jose Ignacio Marquez Damian (Instituto Balseiro - UniversidadINL	Molybdenum Carbide, and Polyethylene Reflectors (2007)		
Surrounded by Copper, Cast Iron, Nickel, Nickel-Copper-Zinc Alloy, Thorium, Tungsten Alloy, or Zinc Reflectors (2007)(Georgia Institute of Technology)INL PU-MET-FAST-042 – Plutonium Hemispheres Reflected by Steel and Oil (2008)John D. Bess (University of Utah)INL LEU-COMP-THERM-028 – Water-Moderated U(4.31)O2 Fuel Rods In Triangular Lattices with Boron, Cadmium and Gadolinium as Soluble Poisons (2008)Jose Ignacio Marquez Damian (Georgia Institute of Technology)INL LEU-MISC-THERM-004 – U(4.31)O2 Fuel Rods In Uranyl Nitrate Solution Containing Gadolinium (2008)Jose Ignacio Marquez Damian (Georgia Institute of Technology)INL IEU-COMP-THERM-012 – RA-0 Reactor: Graphite Reflected Arrangement of LIO2-Graphite Fuel Rods in Water (2008)Jose Ignacio Marquez Damian (Instituto Balseiro - UniversidadINL		Jessica Feener	
Thorium, Tungsten Alloy, or Zinc Reflectors (2007) Image: Constraint of the constraint of th		(Georgia Institute of Technology)	INL
Oil (2008) (University of Utah) INL LEU-COMP-THERM-028 – Water-Moderated U(4.31)O2 Fuel Rods In Triangular Lattices with Boron, Cadmium and Gadolinium as Soluble Poisons (2008) Jose Ignacio Marquez Damian (Georgia Institute of Technology) INL LEU-MISC-THERM-004 – U(4.31)O2 Fuel Rods In Uranyl Nitrate Solution Containing Gadolinium (2008) Jose Ignacio Marquez Damian (Georgia Institute of Technology) INL IEU-COMP-THERM-012 – RA-0 Reactor: Graphite Reflected Arrangement of LO2-Graphite Fuel Rods in Water (2008) Jose Ignacio Marquez Damian (Instituto Balseiro - Universidad INL			
LEU-COMP-THERM-028 – Water-Moderated U(4.31)O2 Fuel Rods In Triangular Lattices with Boron, Cadmium and Gadolinium as Soluble Poisons (2008) Jose Ignacio Marquez Damian (Georgia Institute of Technology) INL LEU-MISC-THERM-004 – U(4.31)O2 Fuel Rods In Uranyl Nitrate Solution Containing Gadolinium (2008) Jose Ignacio Marquez Damian (Georgia Institute of Technology) INL IEU-COMP-THERM-012 – RA-0 Reactor: Graphite Reflected Arrangement of LO2-Graphite Fuel Rods in Water (2008) Jose Ignacio Marquez Damian (Instituto Balseiro - Universidad INL			INL
Triangular Lattices with Boron, Cadmium and Gadolinium as Soluble Poisons (2008) Jose Ignacio Marquez Damian (Georgia Institute of Technology) INL LEU-MISC-THERM-004 – U(4.31)O2 Fuel Rods In Uranyl Nitrate Solution Containing Gadolinium (2008) Jose Ignacio Marquez Damian (Georgia Institute of Technology) INL IEU-COMP-THERM-012 – RA-0 Reactor: Graphite Reflected Arrangement of LO2-Graphite Fuel Rods in Water (2008) Jose Ignacio Marquez Damian (Instituto Balseiro - Universidad INL		(University of Utan)	
Intrangular Lattices with Boron, Cadmium and Gadonmium as Soluble (Georgia Institute of Technology) Poisons (2008) (Georgia Institute of Technology) LEU-MISC-THERM-004 – U(4.31)O ₂ Fuel Rods In Uranyl Nitrate Jose Ignacio Marquez Damian (Georgia Institute of Technology) Solution Containing Gadolinium (2008) INL IEU-COMP-THERM-012 – RA-0 Reactor: Graphite Reflected Arrangement of LO ₂ -Graphite Fuel Rods in Water (2008) Jose Ignacio Marquez Damian (Instituto Balseiro - Universidad		Jose Ignacio Marquez Damian	D.U.
LEU-MISC-THERM-004 – U(4.31)O2 Fuel Rods In Uranyl Nitrate Solution Containing Gadolinium (2008) Jose Ignacio Marquez Damian (Georgia Institute of Technology) INL IEU-COMP-THERM-012 – RA-0 Reactor: Graphite Reflected Arrangement of LO2-Graphite Fuel Rods in Water (2008) Jose Ignacio Marquez Damian (Instituto Balseiro - Universidad INL			INL
Solution Containing Gadolinium (2008) (Georgia Institute of Technology) INL IEU-COMP-THERM-012 – RA-0 Reactor: Graphite Reflected Jose Ignacio Marquez Damian (Instituto Balseiro - Universidad INL			
IEU-COMP-THERM-012 – RA-0 Reactor: Graphite Reflected Jose Ignacio Marquez Damian Arrangement of LIO-Graphite Fuel Rods in Water (2008) Instituto Balseiro - Universidad			INL
Arrangement of LIO ₂ -Graphite Fuel Rods in Water (2008) (Instituto Balseiro - Universidad INL			
Arrangement of LUDa-Graphite Filel Rods in Water (2008)			INI
	Arrangement of UO ₂ -Graphite Fuel Rods in Water (2008)	Nacional de Cuyo)	IINL

Table 1. Summary of Student Contributions¹ to the ICSBEP and IRPhEP

¹ The author's intent is to include all student contributions and extend an apology to any who have inadvertently not been included.

² Only student authors are listed. Many evaluation reports include other authors the names of whom may be found in References 1 and 2.

³ INL – Idaho National Laboratory, WSMS – Washington Safety Management Solutions under subcontract to the INL, ORNL – Oak Ridge National Laboratory, ANL – Argonne National Laboratory, LLNL – Lawrence Livermore National Laboratory, JSI – Jozef Stefan Institute IPPE – Institute of Physics and Power Engineering, NNL – National Nuclear Laboratory.

EVALUATION ID & TITLE (YEAR APPROVED)	AUTHOR ² (University)	NATIONAL LABORATORY or COMPANY ³
IEU-COMP-THERM-009 – Power Burst Facility: U(18)O ₂ -CaO-ZrO ₂ Fuel Rods in Water (2009)	Jose Ignacio Marquez Damian Alexis Weir (Instituto Balseiro - Universidad Nacional de Cuyo)	INL
HEU-SOL-THERM-026 – Highly Enriched Uranyl Nitrate in Annular Tanks with Concrete Reflection: 1 × 3 Line Array of Nested Pairs of Tanks (2009)	James Cleaver (Idaho State University)	INL
FFTF-LMFR-RESR-001 – Evaluation of the Initial Isothermal Physics Measurements on the Fast Flux Test Facility, A Prototypic Liquid Metal Fast Breeder Reactor (TBD)	John D. Bess (University of Utah)	INL
HEU-SOL-THERM-034 – Water-Moderated and -Reflected Slabs of Uranium Oxyfluoride (TBD)	Margaret A. Marshall (University of Utah)	INL
HEU-MET-FAST-054 – Concrete Reflected Arrays of Highly Enriched Uranium Cylinders (TBD)	Mackenzie L. Gorham (Idaho State University)	INL
HEU-SOL-THERM-009 – Water-Reflected 6.4-Liter Spheres of Enriched Uranium Oxyfluoride Solutions (1996)	Michelle Pitts (Georgia Institute of Technology)	WSMS
HEU-SOL-THERM-010 – Water-Reflected 9.7 Liter Spheres of Enriched Uranium Oxyfluoride Solutions (1996)	Michelle Pitts (Georgia Institute of Technology)	WSMS
HEU-SOL-THERM-011 – Water-Reflected 17 Liter Spheres of Enriched Uranium Oxyfluoride Solutions (1996)	Michelle Pitts (Georgia Institute of Technology)	WSMS
HEU-SOL-THERM-012 – Water-Reflected 91-Liter Sphere Of Enriched Uranium Oxyfluoride Solution (1996)	Michelle Pitts (Georgia Institute of Technology)	WSMS
HEU-SOL-THERM-013 – Unreflected 174-Liter Spheres Of Enriched Uranium Nitrate Solutions (1996)	Michelle Pitts (Georgia Institute of Technology)	WSMS
LEU-SOL-THERM-002 – 174 Liter Spheres Of Low Enriched (4.9%) Uranium Oxyfluoride Solutions (1997)	Michelle Pitts (Georgia Institute of Technology)	WSMS
PU-MET-FAST-016 – Flooded 3x3x3 Arrays of 3-Kg Plutonium Metal Cylinders - Phase 1 (1997)	Michelle Pitts (Georgia Institute of Technology)	WSMS
PU-MET-FAST-037 – Flooded 2x2xN Arrays of 3-Kg Plutonium Metal Cylinders - Phase 2 (1998)	Michelle Pitts (Georgia Institute of Technology)	WSMS
MIX-COMP-THERM-005 – Water-Moderated Mixed Plutonium- Uranium Oxide Pins, 4.0 Wt.% PuO ₂ , 18% ²⁴⁰ Pu, Natural Uranium (1999)	Darby S. Kimball (University of Virginia)	WSMS
MIX-COMP-THERM-006 – Water-Moderated Mixed Oxide Hexagonal Lattices - 2.0 Wt.% PuO ₂ , 8% ²⁴⁰ Pu, Natural Uranium (2000)	Jim W. Campbell (Georgia Institute of Technology)	WSMS
HEU-MET-FAST-078 – HEU Metal Cylinders, Partially Reflected by Water, Polyethylene, Lucite, and Paraffin (2006)	Nick Schira (University of Cincinnati)	WSMS
PU-SOL-THERM-018 – Water-Reflected 24-Inch Diameter Cylinder of Plutonium (42.9% ²⁴⁰ Pu) Nitrate Solution (2006)	Doug Warner (University of Cincinnati)	WSMS
PU-SOL-THERM-034 – Plutonium (8.3 Wt.% ²⁴⁰ Pu) Nitrate Solution With Gadolinium In Water-Reflected 24-Inch Diameter Cylinder (2007)	Nick Schira Kyle Knecht (University of Cincinnati)	WSMS
HEU-MET-FAST-051 – Uranium (93.2) Metal Cylinders (7-Inch, 9- Inch, 11-Inch, 13-Inch, and 15-Inch Diameter) and Two 11-Inch- Diameter Interacting Uranium (93.2) Metal Cylinders (2002)	Robert H. Elwood, Jr. (University of Tennessee - Knoxville)	ORNL
U233-SOL-THERM-016 – Unreflected Solutions of 233 UO ₂ (NO ₃) ₂ in Cylinders (2005)	Shane E. Parkey (University of Tennessee - Knoxville)	ORNL
U233-SOL-THERM-017 – Water-Reflected Solutions of ²³³ UO ₂ (NO ₃) ₂ in Cylinders (2005)	Shane E. Parkey (University of Tennessee - Knoxville)	ORNL
LEU-MET-THERM-007 – Water-Moderated and Water-Reflected 0.300 Inch Diameter U(4.95) Metal Rods in 1.3, 1.53, 1.8, 2.05, 2.453 and 2.9 Cm Square-Pitched Arrays (TBD)	Carlos H. Juarez-Gosselin (University of Tennessee - Knoxville)	ORNL

EVALUATION ID & TITLE (YEAR APPROVED)	AUTHOR ² (University)	NATIONAL LABORATORY or COMPANY ³
MIX-COMP-FAST-001 – ZPR-6 Assembly 7: A Cylindrical Assembly with Mixed (Pu,U)-Oxide Fuel and Sodium with a Thick Depleted-Uranium Reflector (2003)	Pedro Moneo, Paul A. Van den Hende (Institut National des Sciences et Techniques Nucléaires)	ANL
HEU-MET-FAST-057 – Highly Enriched Uranium Metal Spheres and Cylinders Reflected by Lead (2004)	Mark Lee (University of California – Berkeley)	LLNL
MIX-MISC-THERM-005 – Water-Reflected Triangular-Pitched Lattice of Mixed Oxide Fuel Rods Immersed in Plutonium-Uranyl Nitrate Solution Containing Boron and Gadolinium (2005)	Milan Tomazin University of Ljubljana	JSI
MIX-SOL-THERM-010 – Water-Reflected Plutonium-Uranyl Nitrate Solution Containing Boron and Gadolinium (2006)	Milan Tomazin Luka Snoj University of Ljubljana	JSI
LEU-COMP-THERM-081 – PWR Type UO ₂ Fuel Rods with Enrichments of 3.5 and 6.6 Wt.% with Burnable Absorber ("Otto Hahn" Nuclear Ship Program, Second Core) (2007)	Petra Rogan Luka Snoj University of Ljubljana	JSI
KRITZ-LWR-RESR-001 – KRITZ-2:19 Experiment on Regular H2O/Fuel Pin Lattices with Mixed Oxide Fuel at Temperatures 21.1 and 235.9 °C (2009)	Luka Snoj University of Ljubljana	JSI
KRITZ-LWR-RESR-002 – KRITZ-2:1 Experiment on Regular H2O/Fuel Pin Lattices with Low Enriched Uranium Fuel at Temperatures 19.7 °C and 248.5 °C (2009)	Luka Snoj University of Ljubljana	JSI
KRITZ-LWR-RESR-003 – KRITZ-2:13 Experiment on Regular H2O/Fuel Pin Lattices with Low Enriched Uranium Fuel at Temperatures 22.1 °C and 243 °C (2009)	Luka Snoj University of Ljubljana	JSI
HEU-MET-THERM-032 – 1x1 HEU/Polyethylene Reflected and Moderated by Polyethylene (TBD)	Luka Snoj Gasper Zerovnik University of Ljubljana	JSI
BFS1-FUND-EXP-001 – BFS-97, -99, -101 Assemblies: Experimental Program on Critical Assemblies with Heterogeneous Compositions of Plutonium, Depleted-Uranium Dioxide, and Polyethylene (2007)	Olga Pavlova (Institute of Atomic Power Engineering)	IPPE
BFS1-FUND-EXP-002 – Experimental Program Performed at the BFS-42 Assembly – K-Infinity Experiments for ²³⁸ U in Fast Neutron Spectra: Measurements with Plutonium Mixed with Depleted Uranium Dioxide and Polyethylene (2007)	Olga Pavlova (Institute of Atomic Power Engineering)	IPPE
BFS2-FUND-EXP-001 – Experimental Program Performed at the BFS-31 Assemblies – K-Infinity Experiments for ²³⁸ U in Fast Neutron Spectra: Measurements with Plutonium Mixed with Depleted Uranium Dioxide (20	Olga Pavlova (Institute of Atomic Power Engineering)	IPPE
BFS1-FUND-EXP-003 – BFS-57 And BFS-59 Assemblies: Experimental Program on Critical Assemblies with Heterogeneous Compositions of Enriched-Uranium Dioxide or Plutonium, Depleted-Uranium Dioxide, and Polyethylene (2008)	Olga Pavlova (Institute of Atomic Power Engineering)	IPPE
FUND-JINR-1/E-MULT-TRANS-001 – Neutron Transmission Through Samples of Depleted Uranium, Highly – Enriched Uranium, and Plutonium for Determination of Resonance Self-Shielding of Total Cross Section and Fission Cross Section of ²³⁸ U, ²³⁵ U, and ²³⁹ Pu (2008)	Olga Pavlova (Institute of Atomic Power Engineering)	IPPE
VENUS-PWR-EXP-005 – Experimental Study of the VENUS-PRP Configurations No. 9 and 9/1 (TBD)	Christopher Grove (Birmingham University-UK)	NNL