891 research outputs found

    On the Power of Robust Solutions in Two-Stage Stochastic and Adaptive Optimization Problems

    Get PDF
    We consider a two-stage mixed integer stochastic optimization problem and show that a static robust solution is a good approximation to the fully adaptable two-stage solution for the stochastic problem under fairly general assumptions on the uncertainty set and the probability distribution. In particular, we show that if the right-hand side of the constraints is uncertain and belongs to a symmetric uncertainty set (such as hypercube, ellipsoid or norm ball) and the probability measure is also symmetric, then the cost of the optimal fixed solution to the corresponding robust problem is at most twice the optimal expected cost of the two-stage stochastic problem. Furthermore, we show that the bound is tight for symmetric uncertainty sets and can be arbitrarily large if the uncertainty set is not symmetric. We refer to the ratio of the optimal cost of the robust problem and the optimal cost of the two-stage stochastic problem as the stochasticity gap. We also extend the bound on the stochasticity gap for another class of uncertainty sets referred to as positive. If both the objective coefficients and right-hand side are uncertain, we show that the stochasticity gap can be arbitrarily large even if the uncertainty set and the probability measure are both symmetric. However, we prove that the adaptability gap (ratio of optimal cost of the robust problem and the optimal cost of a two-stage fully adaptable problem) is at most four even if both the objective coefficients and the right-hand side of the constraints are uncertain and belong to a symmetric uncertainty set. The bound holds for the class of positive uncertainty sets as well. Moreover, if the uncertainty set is a hypercube (special case of a symmetric set), the adaptability gap is one under an even more general model of uncertainty where the constraint coefficients are also uncertain.National Science Foundation (U.S.) (NSF Grant DMI-0556106)National Science Foundation (U.S.) (NSF Grant EFRI-0735905

    On the Power and Limitations of Affine Policies in Two-Stage Adaptive Optimization

    Get PDF
    We consider a two-stage adaptive linear optimization problem under right hand side uncertainty with a min–max objective and give a sharp characterization of the power and limitations of affine policies (where the second stage solution is an affine function of the right hand side uncertainty). In particular, we show that the worst-case cost of an optimal affine policy can be Omega(m12−) times the worst-case cost of an optimal fully-adaptable solution for any delta > 0, where m is the number of linear constraints. We also show that the worst-case cost of the best affine policy is O(m) times the optimal cost when the first-stage constraint matrix has non-negative coefficients. Moreover, if there are only k ≤ m uncertain parameters, we generalize the performance bound for affine policies to O(k) , which is particularly useful if only a few parameters are uncertain. We also provide an O(k) -approximation algorithm for the general case without any restriction on the constraint matrix but the solution is not an affine function of the uncertain parameters. We also give a tight characterization of the conditions under which an affine policy is optimal for the above model. In particular, we show that if the uncertainty set, R+m is a simplex, then an affine policy is optimal. However, an affine policy is suboptimal even if is a convex combination of only (m + 3) extreme points (only two more extreme points than a simplex) and the worst-case cost of an optimal affine policy can be a factor (2 − delta) worse than the worst-case cost of an optimal fully-adaptable solution for any delta > 0.National Science Foundation (U.S.) (NSF Grants DMI-0556106)National Science Foundation (U.S.) (EFRI-0735905

    Decomposition Algorithms for Analyzing Transient Phenomena in Multi-class Queueing Networks in Air Transportation

    Get PDF
    In a previous paper (Peterson, Bertsimas, and Odoni 1992), we studied the phenomenon of transient congestion in landings at a hub airport and developed a recursive approach for computing moments of queue lengths and waiting times. In this paper we extend our approach to a network, developing two approximations based on the method used for the single hub. We present computational results for a simple 2-hub network and indicate the usefulness of the approach in analyzing the interaction between hubs. Although our motivation is drawn from air transportation, our method is applicable to all multi-class queuing networks where service capacity at a station may be modeled as a Markov or semi-Markov process. Our method represents a new approach for analyzing transient congestion phenomena in such networks. Airport congestion and delay have grown significantly over the last decade. By 1986 ground delays at domestic airports averaged 2000 hours per day, the equivalent of grounding the entire fleet of Delta Airlines at that tillie (250 aircraft) for one day (Donoghue 1986). In 1990, 21 airports in the U.S. exceeded 20, 000 hours of delay, with 12 more projected to exceed this total by 1997 (National Transportation Research Board 1991). This amounts to *School of Public and Environmental Affairs, Indiana University, Bloomington, Indiana tSloan School of Management, Massachusetts Institute of Technology, Cambridge, Massachusetts ;Department of Aeronautics and Astronautics, Massachusetts Institute of Technology, Cambridge, Massachusett

    Hospital-Wide Inpatient Flow Optimization

    Get PDF
    An ideal that supports quality and delivery of care is to have hospital operations that are coordinated and optimized across all services in real-time. As a step toward this goal, we propose a multistage adaptive robust optimization approach combined with machine learning techniques. Informed by data and predictions, our framework unifies the bed assignment process across the entire hospital and accounts for present and future inpatient flows, discharges as well as bed requests – from the emergency department, scheduled surgeries and admissions, and outside transfers. We evaluate our approach through simulations calibrated on historical data from a large academic medical center. For the 600-bed institution, our optimization model was solved in seconds, reduced off-service placement by 24% on average, and boarding delays in the emergency department and post-anesthesia units by 35% and 18% respectively. We also illustrate the benefit from using adaptive linear decision rules instead of static assignment decisions

    On the probabilistic min spanning tree Problem

    Get PDF
    We study a probabilistic optimization model for min spanning tree, where any vertex vi of the input-graph G(V,E) has some presence probability pi in the final instance G′ ⊂ G that will effectively be optimized. Suppose that when this “real” instance G′ becomes known, a spanning tree T, called anticipatory or a priori spanning tree, has already been computed in G and one can run a quick algorithm (quicker than one that recomputes from scratch), called modification strategy, that modifies the anticipatory tree T in order to fit G ′. The goal is to compute an anticipatory spanning tree of G such that, its modification for any G ′ ⊆ G is optimal for G ′. This is what we call probabilistic min spanning tree problem. In this paper we study complexity and approximation of probabilistic min spanning tree in complete graphs under two distinct modification strategies leading to different complexity results for the problem. For the first of the strategies developed, we also study two natural subproblems of probabilistic min spanning tree, namely, the probabilistic metric min spanning tree and the probabilistic min spanning tree 1,2 that deal with metric complete graphs and complete graphs with edge-weights either 1, or 2, respectively

    Simple Imputation Rules for Prediction with Missing Data: Theoretical Guarantees vs. Empirical Performance

    Get PDF
    Missing data is a common issue in real-world datasets. This paper studies the performance of impute-then-regress pipelines by contrasting theoretical and empirical evidence. We establish the asymptotic consistency of such pipelines for a broad family of imputation methods. While common sense suggests that a ‘good’ imputation method produces datasets that are plausible, we show, on the contrary, that, as far as prediction is concerned, crude can be good. Among others, we find that mode-impute is asymptotically sub-optimal, while mean-impute is asymptotically optimal. We then exhaustively assess the validity of these theoretical conclusions on a large corpus of synthetic, semi-real, and real datasets. While the empirical evidence we collect mostly supports our theoretical findings, it also highlights gaps between theory and practice and opportunities for future research, regarding the relevance of the MAR assumption, the complex interdependency between the imputation and regression tasks, and the need for realistic synthetic data generation models

    Flows and Decompositions of Games: Harmonic and Potential Games

    Get PDF
    In this paper we introduce a novel flow representation for finite games in strategic form. This representation allows us to develop a canonical direct sum decomposition of an arbitrary game into three components, which we refer to as the potential, harmonic and nonstrategic components. We analyze natural classes of games that are induced by this decomposition, and in particular, focus on games with no harmonic component and games with no potential component. We show that the first class corresponds to the well-known potential games. We refer to the second class of games as harmonic games, and study the structural and equilibrium properties of this new class of games. Intuitively, the potential component of a game captures interactions that can equivalently be represented as a common interest game, while the harmonic part represents the conflicts between the interests of the players. We make this intuition precise, by studying the properties of these two classes, and show that indeed they have quite distinct and remarkable characteristics. For instance, while finite potential games always have pure Nash equilibria, harmonic games generically never do. Moreover, we show that the nonstrategic component does not affect the equilibria of a game, but plays a fundamental role in their efficiency properties, thus decoupling the location of equilibria and their payoff-related properties. Exploiting the properties of the decomposition framework, we obtain explicit expressions for the projections of games onto the subspaces of potential and harmonic games. This enables an extension of the properties of potential and harmonic games to "nearby" games. We exemplify this point by showing that the set of approximate equilibria of an arbitrary game can be characterized through the equilibria of its projection onto the set of potential games

    Algorithm Engineering in Robust Optimization

    Full text link
    Robust optimization is a young and emerging field of research having received a considerable increase of interest over the last decade. In this paper, we argue that the the algorithm engineering methodology fits very well to the field of robust optimization and yields a rewarding new perspective on both the current state of research and open research directions. To this end we go through the algorithm engineering cycle of design and analysis of concepts, development and implementation of algorithms, and theoretical and experimental evaluation. We show that many ideas of algorithm engineering have already been applied in publications on robust optimization. Most work on robust optimization is devoted to analysis of the concepts and the development of algorithms, some papers deal with the evaluation of a particular concept in case studies, and work on comparison of concepts just starts. What is still a drawback in many papers on robustness is the missing link to include the results of the experiments again in the design

    Robust convex optimization: A new perspective that unifies and extends

    Get PDF
    Robust convex constraints are difficult to handle, since finding the worst-case scenario is equivalent to maximizing a convex function. In this paper, we propose a new approach to deal with such constraints that unifies most approaches known in the literature and extends them in a significant way. The extension is either obtaining better solutions than the ones proposed in the literature, or obtaining solutions for classes of problems unaddressed by previous approaches. Our solution is based on an extension of the Reformulation-Linearization-Technique, and can be applied to general convex inequalities and general convex uncertainty sets. It generates a sequence of conservative approximations which can be used to obtain both upper- and lower- bounds for the optimal objective value. We illustrate the numerical benefit of our approach on a robust control and robust geometric optimization example
    corecore