12 research outputs found

    Are sleeping site ecology and season linked to intestinal helminth prevalence and diversity in two sympatric, nocturnal and arboreal primate hosts (Lepilemur edwardsi and Avahi occidentalis)?

    No full text
    Abstract Background Various factors, such as climate, body size and sociality are often linked to parasitism. This constrains the identification of other determinants driving parasite infections. Here, we investigate for the first time intestinal parasites in two sympatric arboreal primate species, which share similar activity patterns, feeding ecology, body size and sociality, and cope with the same climate conditions, but differ in sleeping site ecology: the Milne-Edward’s sportive lemur (Lepilemur edwardsi) and the Western woolly lemur (Avahi occidentalis). Comparison of these two species aimed to test whether differences in sleeping sites are related to differences in parasite infection patterns. Additionally, gender and seasonal factors were taken into account. Animals were radio-collared to record their sleeping site dynamics and to collect fecal samples to assess intestinal parasitism during both the dry and the rainy season. Results Only low parasite diversity was detected, which is attributable to the strict arboreal lifestyle of these lemurs, limiting their contact with infective parasite stages. L. edwardsi, which sleeps in tree holes and repeatedly uses the same sleeping site, excreted eggs of strongyle and oxyurid nematodes, whereby strongyles always occurred in coinfection with oxyurids. In contrast, A. occidentalis, which sleeps on open branches and frequently changes sleeping sites, only excreted eggs of strongyle nematodes. This difference can be attributed to a potential favorable environment presented by tree holes for infective stages, facilitating parasitic transmission. Additionally, Strongylida in A. occidentalis were only observed in the rainy season, suggesting an arrested development during the dry season in the nematodes’ life cycle. Males and females of both lemur species showed the same frequency of parasitism. No differences in body mass of infected and non-infected individuals were observed, indicating that the animals’ body condition remains unaffected by the detected gastrointestinal parasites. Conclusions The comparison of two primate hosts with a very similar lifestyle suggests an influence of the sleeping site ecology on intestinal parasites. In A. occidentalis there was a clear seasonal difference in strongyle egg excretion. These results improve our understanding of the parasite ecology in these endangered primate species, which may be critical in the light of species conservation

    Effects of habitat edges on vegetation structure and the vulnerable golden-brown mouse lemur (Microcebus ravelobensis) in northwestern Madagascar

    No full text
    Abstract Background Edge effects can influence species composition and community structure as a result of changes in microenvironment and edaphic variables. We investigated effects of habitat edges on vegetation structure, abundance and body mass of one vulnerable Microcebus species in northwestern Madagascar. We trapped mouse lemurs along four 1000-m transects (total of 2424 trap nights) that ran perpendicular to the forest edge. We installed 16 pairs of 20 m2 vegetation plots along each transect and measured nine vegetation parameters. To determine the responses of the vegetation and animals to an increasing distance to the edge, we tested the fit of four alternative mathematical functions (linear, power, logistic and unimodal) to the data and derived the depth of edge influence (DEI) for all parameters. Results Logistic and unimodal functions best explained edge responses of vegetation parameters, and the logistic function performed best for abundance and body mass of M. ravelobensis. The DEI varied between 50 m (no. of seedlings, no. of liana, dbh of large trees [dbh ≥ 10 cm]) and 460 m (tree height of large trees) for the vegetation parameters, whereas it was 340 m for M. ravelobensis abundance and 390 m for body mass, corresponding best to the DEI of small tree [dbh < 10 cm] density (360 m). Small trees were significantly taller and the density of seedlings was higher in the interior than in the edge habitat. However, there was no significant difference in M. ravelobensis abundance and body mass between interior and edge habitats, suggesting that M. ravelobensis did not show a strong edge response in the study region. Finally, regression analyses revealed three negative (species abundance and three vegetation parameters) and two positive relationships (body mass and two vegetation parameters), suggesting an impact of vegetation structure on M. ravelobensis which may be partly independent of edge effects. Conclusions A comparison of our results with previous findings reveals that edge effects are variable in space in a small nocturnal primate from Madagascar. Such an ecological plasticity could be extremely relevant for mitigating species responses to habitat loss and anthropogenic disturbances
    corecore