1,129 research outputs found

    Angle-resolved photoemission study of the role of nesting and orbital orderings in the antiferromagnetic phase of BaFe2As2

    Full text link
    We present a detailed comparison of the electronic structure of BaFe2As2 in its paramagnetic and antiferromagnetic (AFM) phases, through angle-resolved photoemission studies. Using different experimental geometries, we resolve the full elliptic shape of the electron pockets, including parts of dxy symmetry along its major axis that are usually missing. This allows us to define precisely how the hole and electron pockets are nested and how the different orbitals evolve at the transition. We conclude that the imperfect nesting between hole and electron pockets explains rather well the formation of gaps and residual metallic droplets in the AFM phase, provided the relative parity of the different bands is taken into account. Beyond this nesting picture, we observe shifts and splittings of numerous bands at the transition. We show that the splittings are surface sensitive and probably not a reliable signature of the magnetic order. On the other hand, the shifts indicate a significant redistribution of the orbital occupations at the transition, especially within the dxz/dyz system, which we discuss

    Giant Anisotropy of Spin-Orbit Splitting at the Bismuth Surface

    Full text link
    We investigate the bismuth (111) surface by means of time and angle resolved photoelectron spectroscopy. The parallel detection of the surface states below and above the Fermi level reveals a giant anisotropy of the Spin-Orbit (SO) spitting. These strong deviations from the Rashba-like coupling cannot be treated in kp\textbf{k}\cdot \textbf{p} perturbation theory. Instead, first principle calculations could accurately reproduce the experimental dispersion of the electronic states. Our analysis shows that the giant anisotropy of the SO splitting is due to a large out-of plane buckling of the spin and orbital texture.Comment: 5 pages, 4 figure

    Significant reduction of electronic correlations upon isovalent Ru substitution of BaFe2As2

    Full text link
    We present a detailed investigation of Ba(Fe0.65Ru0.35)2As2 by transport measurements and Angle Resolved photoemission spectroscopy. We observe that Fe and Ru orbitals hybridize to form a coherent electronic structure and that Ru does not induce doping. The number of holes and electrons, deduced from the area of the Fermi Surface pockets, are both about twice larger than in BaFe2As2. The contribution of both carriers to the transport is evidenced by a change of sign of the Hall coefficient with decreasing temperature. Fermi velocities increase significantly with respect to BaFe2As2, suggesting a significant reduction of correlation effects. This may be a key to understand the appearance of superconductivity at the expense of magnetism in undoped iron pnictides
    corecore